959 resultados para Spectral Broadening
Resumo:
Thesis (M.S.)--University of Illinois at Urbana-Champaign, 1977.
Resumo:
"This report is a product of the Laboratory Simulation of Spectral and Directional Spectral Waves Work Unit, Coastal Flooding and Storm Protection Program, Civil Works Research and Development, at the US Army Engineer Waterways Experiment Station's Coastal Engineering Research Center."--Preface.
Resumo:
"August 1982."
Resumo:
"September 1988."
Resumo:
"November 1989."
Resumo:
Inserted Report documentation page designates D. W. Boyer ... [et al.] as "authors."
Resumo:
Translation of Perenos izluchenii͡a i spektry nebesnykh tel.
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
In many neurons, trains of action potentials show frequency-dependent broadening. This broadening results from the voltage-dependent inactivation of K+ currents that contribute to action potential repolarisation. In different neuronal cell types these K+ currents have been shown to be either slowly inactivating delayed rectifier type currents or rapidly inactivating A-type voltage-gated K+ currents. Recent findings show that inactivation of a Ca2+-dependent K+ current, mediated by large conductance BK-type channels, also contributes to spike broadening. Here, using whole-cell recordings in acute slices, we examine spike broadening in lateral amygdala projection neurons. Spike broadening is frequency dependent and is reversed by brief hyperpolarisations. This broadening is reduced by blockade of voltage-gated Ca2+ channels and BK channels. In contrast, broadening is not blocked by high concentrations of 4-aminopyridine (4-AP) or alpha-dendrotoxin. We conclude that while inactivation of BK-type Ca2+-activated K+ channels contributes to spike broadening in lateral amygdala neurons, inactivation of another as yet unidentified outward current also plays a role.