982 resultados para Space Geometry. Manipulatives. Distance Calculation
Resumo:
The incorporation of space allows the establishment of a more precise relationship between a contaminating input, a contaminating byproduct and emissions that reach the final receptor. However, the presence of asymmetric information impedes the implementation of the first-best policy. As a solution to this problem a site specific deposit refund system for the contaminating input and the contaminating byproduct are proposed. Moreover, the utilization of a successive optimization technique first over space and second over time enables definition of the optimal intertemporal site specific deposit refund system
Resumo:
This final report for Phase 1 of the research on epoxy-coated, prestressing strands in precast prestressed concrete (PC) panels has been published in two volumes. Volume 1--Technical Report contains the problem description, literature review, and survey results; descriptions of the test specimens, experimental tests, and analytical models; discussions of the analytical and experimental results; summary, conclusions, and recommendations; list of references; and acknowledgments. Volume 2--Supplemental Report contains additional information in the form of appendix material for Volume 1 on the questionnaires, strand forces, geometry of the specimens, concrete crack patterns that formed in the strand transfer length and strand development length specimens, concrete strains in the strand transfer length specimens, and load-point deflections and strand-slip measurements for the strand development length specimens. Appendix A contains the questionnaires that were sent to the design agencies and precast concrete producers. A summary of the results to the questions on the surveys are given as the number of respondents who provided the same answers and as paraphrased comments from the respondents. Appendix B contains graphs of strand force versus time, strand force versus temperature, and strand force versus strand cutting sequence for the concrete castings. Appendix C contains figures that show the location of each specimen in the prestress bed, the geometrical configurations for the strand transfer length (T-type) specimens and strand development length (D-type) specimens, and the concrete cracks that developed in some of the T-type specimens when they were prestressed. Appendix D contains figures that show the concrete cracks that developed in the D-type specimens during the strand development length tests. For each of these tests, the sequence of the failure for the specimen is specified. Appendix E contains graphs of concrete strain versus distance from the end of the T-type specimens that were instrumented with internal embedment strain gages. Appendix F contains graphs of load versus load-point deflection and load versus strand-slip for the strand development length tests of the D-type specimens.
Resumo:
Fluorescence resonance energy transfer (FRET) allows the user to investigate interactions between fluorescent partners. One crucial issue when calculating sensitized emission FRET is the correction for spectral bleed-throughs (SBTs), which requires to calculate the ratios between the intensities in the FRET and in the donor or acceptor settings, when only the donor or acceptor are present. Theoretically, SBT ratios should be constant. However, experimentally, these ratios can vary as a function of fluorophore intensity, and assuming constant values may hinder precise FRET calculation. One possible cause for such a variation is the use of a microscope set-up with different photomultipliers for the donor and FRET channels, a set-up allowing higher speed acquisitions on very dynamic fluorescent molecules in living cells. Herein, we show that the bias introduced by the differential response of the two PMTs can be circumvented by a simple modeling of the SBT ratios as a function of fluorophore intensity. Another important issue when performing FRET is the localization of FRET within the cell or a population of cells. We hence developed a freely available ImageJ plug-in, called PixFRET, that allows a simple and rapid determination of SBT parameters and the display of normalized FRET images. The usefulness of this modeling and of the plug-in are exemplified by the study of FRET in a system where two interacting nuclear receptors labeled with ECFP and EYFP are coexpressed in living cells.
Resumo:
The objective of this work was to evaluate the genetic diversity of 16 maize inbred lines, and to determine the correlation between genetic distance and hybrid performance, using random amplified polymorphic DNA (RAPD) molecular markers. Twenty-two different random primers were used, which resulted in the amplification of 265 fragments, 237 (84.44%) of them being polymorphic. A genetic similarity matrix was created from the RAPD data, using Jaccard coefficient, and a dendrogram was constructed. Hybrid analyses were carried out using random block design and Griffing method VI for diallel crossings. The genetic associations showed five distinct heterotic groups. Correlations between genetic divergences detected by RAPD, as well as the means observed in the diallel crossings were positive and significant for plant height, ear height, prolificacy, and grain weight. The correlation of genetic divergences, detected by RAPD, and the specific combining ability between heterotic group associations, showed significance in all characteristics under study, except prolificacy. A direct relationship between genetic divergence and productivity was found in 79.2% of the 120 hybrids confirming the hypothesis that genetic divergence is directly related to the performance of hybrids and is efficient in predicting it.
Resumo:
When individuals learn by trial-and-error, they perform randomly chosen actions and then reinforce those actions that led to a high payoff. However, individuals do not always have to physically perform an action in order to evaluate its consequences. Rather, they may be able to mentally simulate actions and their consequences without actually performing them. Such fictitious learners can select actions with high payoffs without making long chains of trial-and-error learning. Here, we analyze the evolution of an n-dimensional cultural trait (or artifact) by learning, in a payoff landscape with a single optimum. We derive the stochastic learning dynamics of the distance to the optimum in trait space when choice between alternative artifacts follows the standard logit choice rule. We show that for both trial-and-error and fictitious learners, the learning dynamics stabilize at an approximate distance of root n/(2 lambda(e)) away from the optimum, where lambda(e) is an effective learning performance parameter depending on the learning rule under scrutiny. Individual learners are thus unlikely to reach the optimum when traits are complex (n large), and so face a barrier to further improvement of the artifact. We show, however, that this barrier can be significantly reduced in a large population of learners performing payoff-biased social learning, in which case lambda(e) becomes proportional to population size. Overall, our results illustrate the effects of errors in learning, levels of cognition, and population size for the evolution of complex cultural traits. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
The flow of two immiscible fluids through a porous medium depends on the complex interplay between gravity, capillarity, and viscous forces. The interaction between these forces and the geometry of the medium gives rise to a variety of complex flow regimes that are difficult to describe using continuum models. Although a number of pore-scale models have been employed, a careful investigation of the macroscopic effects of pore-scale processes requires methods based on conservation principles in order to reduce the number of modeling assumptions. In this work we perform direct numerical simulations of drainage by solving Navier-Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and model the transition from stable flow to viscous fingering, we focus on the macroscopic capillary pressure and we compare different definitions of this quantity under quasi-static and dynamic conditions. We show that the difference between the intrinsic phase-average pressures, which is commonly used as definition of Darcy-scale capillary pressure, is subject to several limitations and it is not accurate in presence of viscous effects or trapping. In contrast, a definition based on the variation of the total surface energy provides an accurate estimate of the macroscopic capillary pressure. This definition, which links the capillary pressure to its physical origin, allows a better separation of viscous effects and does not depend on the presence of trapped fluid clusters.
Resumo:
Los trabajos sobre demografía protohistórica suelen estimar el número de habitantes por asentamiento a partir de dos métodos básicos: el primero basado en el cálculo del espacio útil total dedicado a habitación; el segundo a partir del número de casas. El primer método implica una asignación igualitaria de espacio entre los habitantes, mientras el segundo suele atribuir un número fi jo de personas por casa, lo que implica mayor superfi cie por habitante cuanto mayor es la casa. Ambos métodos son igualmente viables para un cálculo global de la población del asentamiento, pero ninguno de ellos es totalmente satisfactorio, ya que no tienen en cuenta la posibilidad de una repartición del espacio de forma desigual o de la coexistencia de grupos domésticos de distintos tamaños en un mismo asentamiento. A partir de la reflexión crítica sobre estos métodos, proponemos utilizar el análisis del uso del espacio doméstico como indicador social y como base para plantear hipótesis sobre la composición de la estructura familiar en la protohistoria así como los cambios que ésta sufre a lo largo del tiempo.
Resumo:
En este artículo planteamos una aproximación a la idea de espacio público como articulador del conjunto de acontecimientos que intervienen en la vida de las ciudades. Entendemos este fenómeno como una red poliédrica y multidimensional, cuyo estudio pasa por el análisis de diversas problemáticas: la identificación de los límites entre espacio público y esfera pública; la conformación del espacio público construido; la aproximación teórica al fenómeno desde la contemporaneidad; la dimensión social del espacio público; y finalmente la perspectiva de la gestión de las ciudades. Todas estas dimensiones expresan una mirada crítica del objeto i ponen en valor niveles de trabajo interdisciplinar y multiescala, fundamentales para entender e intervenir en el espacio público de la ciudad contemporánea.
Resumo:
OBJECTIVES: This study aimed at measuring the lipophilicity and ionization constants of diastereoisomeric dipeptides, interpreting them in terms of conformational behavior, and developing statistical models to predict them. METHODS: A series of 20 dipeptides of general structure NH(2) -L-X-(L or D)-His-OMe was designed and synthetized. Their experimental ionization constants (pK(1) , pK(2) and pK(3) ) and lipophilicity parameters (log P(N) and log D(7.4) ) were measured by potentiometry. Molecular modeling in three media (vacuum, water, and chloroform) was used to explore and sample their conformational space, and for each stored conformer to calculate their radius of gyration, virtual log P (preferably written as log P(MLP) , meaning obtained by the molecular lipophilicity potential (MLP) method) and polar surface area (PSA). Means and ranges were calculated for these properties, as was their sensitivity (i.e., the ratio between property range and number of rotatable bonds). RESULTS: Marked differences between diastereoisomers were seen in their experimental ionization constants and lipophilicity parameters. These differences are explained by molecular flexibility, configuration-dependent differences in intramolecular interactions, and accessibility of functional groups. Multiple linear equations correlated experimental lipophilicity parameters and ionization constants with PSA range and other calculated parameters. CONCLUSION: This study documents the differences in lipophilicity and ionization constants between diastereoisomeric dipeptides. Such configuration-dependent differences are shown to depend markedly on differences in conformational behavior and to be amenable to multiple linear regression. Chirality 24:566-576, 2012. © 2012 Wiley Periodicals, Inc.
Resumo:
This paper discusses some of the key concepts in the consideration of public art as a central element in urban regeneration processes, especially in reference to its role in the processes of citizen participation.
Resumo:
Summary Due to their conic shape and the reduction of area with increasing elevation, mountain ecosystems were early identified as potentially very sensitive to global warming. Moreover, mountain systems may experience unprecedented rates of warming during the next century, two or three times higher than that records of the 20th century. In this context, species distribution models (SDM) have become important tools for rapid assessment of the impact of accelerated land use and climate change on the distribution plant species. In my study, I developed and tested new predictor variables for species distribution models (SDM), specific to current and future geographic projections of plant species in a mountain system, using the Western Swiss Alps as model region. Since meso- and micro-topography are relevant to explain geographic patterns of plant species in mountain environments, I assessed the effect of scale on predictor variables and geographic projections of SDM. I also developed a methodological framework of space-for-time evaluation to test the robustness of SDM when projected in a future changing climate. Finally, I used a cellular automaton to run dynamic simulations of plant migration under climate change in a mountain landscape, including realistic distance of seed dispersal. Results of future projections for the 21st century were also discussed in perspective of vegetation changes monitored during the 20th century. Overall, I showed in this study that, based on the most severe A1 climate change scenario and realistic dispersal simulations of plant dispersal, species extinctions in the Western Swiss Alps could affect nearly one third (28.5%) of the 284 species modeled by 2100. With the less severe 61 scenario, only 4.6% of species are predicted to become extinct. However, even with B1, 54% (153 species) may still loose more than 80% of their initial surface. Results of monitoring of past vegetation changes suggested that plant species can react quickly to the warmer conditions as far as competition is low However, in subalpine grasslands, competition of already present species is probably important and limit establishment of newly arrived species. Results from future simulations also showed that heavy extinctions of alpine plants may start already in 2040, but the latest in 2080. My study also highlighted the importance of fine scale and regional. assessments of climate change impact on mountain vegetation, using more direct predictor variables. Indeed, predictions at the continental scale may fail to predict local refugees or local extinctions, as well as loss of connectivity between local populations. On the other hand, migrations of low-elevation species to higher altitude may be difficult to predict at the local scale. Résumé La forme conique des montagnes ainsi que la diminution de surface dans les hautes altitudes sont reconnues pour exposer plus sensiblement les écosystèmes de montagne au réchauffement global. En outre, les systèmes de montagne seront sans doute soumis durant le 21ème siècle à un réchauffement deux à trois fois plus rapide que celui mesuré durant le 20ème siècle. Dans ce contexte, les modèles prédictifs de distribution géographique de la végétation se sont imposés comme des outils puissants pour de rapides évaluations de l'impact des changements climatiques et de la transformation du paysage par l'homme sur la végétation. Dans mon étude, j'ai développé de nouvelles variables prédictives pour les modèles de distribution, spécifiques à la projection géographique présente et future des plantes dans un système de montagne, en utilisant les Préalpes vaudoises comme zone d'échantillonnage. La méso- et la microtopographie étant particulièrement adaptées pour expliquer les patrons de distribution géographique des plantes dans un environnement montagneux, j'ai testé les effets d'échelle sur les variables prédictives et sur les projections des modèles de distribution. J'ai aussi développé un cadre méthodologique pour tester la robustesse potentielle des modèles lors de projections pour le futur. Finalement, j'ai utilisé un automate cellulaire pour simuler de manière dynamique la migration future des plantes dans le paysage et dans quatre scénarios de changement climatique pour le 21ème siècle. J'ai intégré dans ces simulations des mécanismes et des distances plus réalistes de dispersion de graines. J'ai pu montrer, avec les simulations les plus réalistes, que près du tiers des 284 espèces considérées (28.5%) pourraient être menacées d'extinction en 2100 dans le cas du plus sévère scénario de changement climatique A1. Pour le moins sévère des scénarios B1, seulement 4.6% des espèces sont menacées d'extinctions, mais 54% (153 espèces) risquent de perdre plus 80% de leur habitat initial. Les résultats de monitoring des changements de végétation dans le passé montrent que les plantes peuvent réagir rapidement au réchauffement climatique si la compétition est faible. Dans les prairies subalpines, les espèces déjà présentes limitent certainement l'arrivée de nouvelles espèces par effet de compétition. Les résultats de simulation pour le futur prédisent le début d'extinctions massives dans les Préalpes à partir de 2040, au plus tard en 2080. Mon travail démontre aussi l'importance d'études régionales à échelle fine pour évaluer l'impact des changements climatiques sur la végétation, en intégrant des variables plus directes. En effet, les études à échelle continentale ne tiennent pas compte des micro-refuges, des extinctions locales ni des pertes de connectivité entre populations locales. Malgré cela, la migration des plantes de basses altitudes reste difficile à prédire à l'échelle locale sans modélisation plus globale.
Resumo:
En este artículo planteamos una aproximación a la idea de espacio público como articulador del conjunto de acontecimientos que intervienen en la vida de las ciudades. Entendemos este fenómeno como una red poliédrica y multidimensional, cuyo estudio pasa por el análisis de diversas problemáticas: la identificación de los límites entre espacio público y esfera pública; la conformación del espacio público construido; la aproximación teórica al fenómeno desde la contemporaneidad; la dimensión social del espacio público; y finalmente la perspectiva de la gestión de las ciudades. Todas estas dimensiones expresan una mirada crítica del objeto i ponen en valor niveles de trabajo interdisciplinar y multiescala, fundamentales para entender e intervenir en el espacio público de la ciudad contemporánea.
Resumo:
Sustainable resource use is one of the most important environmental issues of our times. It is closely related to discussions on the 'peaking' of various natural resources serving as energy sources, agricultural nutrients, or metals indispensable in high-technology applications. Although the peaking theory remains controversial, it is commonly recognized that a more sustainable use of resources would alleviate negative environmental impacts related to resource use. In this thesis, sustainable resource use is analysed from a practical standpoint, through several different case studies. Four of these case studies relate to resource metabolism in the Canton of Geneva in Switzerland: the aim was to model the evolution of chosen resource stocks and flows in the coming decades. The studied resources were copper (a bulk metal), phosphorus (a vital agricultural nutrient), and wood (a renewable resource). In addition, the case of lithium (a critical metal) was analysed briefly in a qualitative manner and in an electric mobility perspective. In addition to the Geneva case studies, this thesis includes a case study on the sustainability of space life support systems. Space life support systems are systems whose aim is to provide the crew of a spacecraft with the necessary metabolic consumables over the course of a mission. Sustainability was again analysed from a resource use perspective. In this case study, the functioning of two different types of life support systems, ARES and BIORAT, were evaluated and compared; these systems represent, respectively, physico-chemical and biological life support systems. Space life support systems could in fact be used as a kind of 'laboratory of sustainability' given that they represent closed and relatively simple systems compared to complex and open terrestrial systems such as the Canton of Geneva. The chosen analysis method used in the Geneva case studies was dynamic material flow analysis: dynamic material flow models were constructed for the resources copper, phosphorus, and wood. Besides a baseline scenario, various alternative scenarios (notably involving increased recycling) were also examined. In the case of space life support systems, the methodology of material flow analysis was also employed, but as the data available on the dynamic behaviour of the systems was insufficient, only static simulations could be performed. The results of the case studies in the Canton of Geneva show the following: were resource use to follow population growth, resource consumption would be multiplied by nearly 1.2 by 2030 and by 1.5 by 2080. A complete transition to electric mobility would be expected to only slightly (+5%) increase the copper consumption per capita while the lithium demand in cars would increase 350 fold. For example, phosphorus imports could be decreased by recycling sewage sludge or human urine; however, the health and environmental impacts of these options have yet to be studied. Increasing the wood production in the Canton would not significantly decrease the dependence on wood imports as the Canton's production represents only 5% of total consumption. In the comparison of space life support systems ARES and BIORAT, BIORAT outperforms ARES in resource use but not in energy use. However, as the systems are dimensioned very differently, it remains questionable whether they can be compared outright. In conclusion, the use of dynamic material flow analysis can provide useful information for policy makers and strategic decision-making; however, uncertainty in reference data greatly influences the precision of the results. Space life support systems constitute an extreme case of resource-using systems; nevertheless, it is not clear how their example could be of immediate use to terrestrial systems.