986 resultados para Southwestern Atlantic upper margin


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the Equamarge II cruise (February 4 to March 21, 1988), on board the R. V. "Jean Charcot", 12.500 kms of continuous geophysical profiling have been recorded along three sectors of the Equatorial Atlantic. Two segments ofthe West African transform margin have been intensively surveyed off Guinea and off Ivory Coast and Ghana. The active Romanche fracture zone has been surveyed in details on a distance of about 100 kms. These data (multibeam bathymetry, continuous seismic profiling, magnetism and gravity) have been supplemented by 16 geological stations (dredging and coring). This report gives a synthetic review of the onboard analysis and allows to better understand the geological structures of the three surveyed areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The TEX86 paleotemperature proxy is based on archaeal glycerol dibiphytanyl glycerol tetraether (GDGT) lipids preserved in marine sediments, yet both the influence of different physiological factors on the structural distribution of GDGTs, and the mechanism(s) by which GDGTs are exported to marine sediments remain unclear. In particular, TEX86 temperatures derived directly from suspended particulate matter (SPM) in the water column can diverge strongly from corresponding in situ temperatures. Here we investigated the abundance and structural distribution of GDGTs in the South-west and Equatorial Atlantic Ocean by examining SPM collected from four surface 1000 m depth profiles spanning 48 degrees of latitude. The depth distribution of GDGTs was consistent with our current understanding of marine archaeal ecology, and specifically of ammonia-oxidizing Thaumarchaeota. Maximum GDGT concentrations occurred at the base of the primary NO2- maximum. Core GDGTs dominated the structural distribution in surface waters, while intact polar GDGTs - thought to potentially indicate live cells - were more abundant at all depths below the maximum NO2- concentration. When integrated through the upper 1000 m of the water column, > 98% of GDGTs were present in waters at and below the depth of the primary NO2- maximum. TEX86-calculated temperatures showed local minima at the depth of the NO2- maximum, while the ratio of GDGT 2:GDGT 3 [2/3] increased with depth throughout the upper water column. These results were used to model the depth of origin for GDGTs exported to sediments. By comparing our SPM data to published TEX86 values and [2/3] ratios from sediments near our study sites, we conclude that most GDGTs are exported from the depth of maximum GDGT concentrations, near the subsurface NO2- maximum (~80-250 m). This indicates that local ammonia oxidation dynamics are important regional controls on the GDGT ratios preserved in sediments. Predicting the extent to which subsurface variations in archaeal activity may influence the sedimentary TEX86 record will require a better understanding of how site-specific productivity and particle dynamics in the upper water column influence the depth of origin for exported organic matter.