949 resultados para Sonar Signal Processing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Designing a robust algorithm for visual object tracking has been a challenging task since many years. There are trackers in the literature that are reasonably accurate for many tracking scenarios but most of them are computationally expensive. This narrows down their applicability as many tracking applications demand real time response. In this paper, we present a tracker based on random ferns. Tracking is posed as a classification problem and classification is done using ferns. We used ferns as they rely on binary features and are extremely fast at both training and classification as compared to other classification algorithms. Our experiments show that the proposed tracker performs well on some of the most challenging tracking datasets and executes much faster than one of the state-of-the-art trackers, without much difference in tracking accuracy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time-varying linear prediction has been studied in the context of speech signals, in which the auto-regressive (AR) coefficients of the system function are modeled as a linear combination of a set of known bases. Traditionally, least squares minimization is used for the estimation of model parameters of the system. Motivated by the sparse nature of the excitation signal for voiced sounds, we explore the time-varying linear prediction modeling of speech signals using sparsity constraints. Parameter estimation is posed as a 0-norm minimization problem. The re-weighted 1-norm minimization technique is used to estimate the model parameters. We show that for sparsely excited time-varying systems, the formulation models the underlying system function better than the least squares error minimization approach. Evaluation with synthetic and real speech examples show that the estimated model parameters track the formant trajectories closer than the least squares approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We address the problem of parameter estimation of an ellipse from a limited number of samples. We develop a new approach for solving the ellipse fitting problem by showing that the x and y coordinate functions of an ellipse are finite-rate-of-innovation (FRI) signals. Uniform samples of x and y coordinate functions of the ellipse are modeled as a sum of weighted complex exponentials, for which we propose an efficient annihilating filter technique to estimate the ellipse parameters from the samples. The FRI framework allows for estimating the ellipse parameters reliably from partial or incomplete measurements even in the presence of noise. The efficiency and robustness of the proposed method is compared with state-of-art direct method. The experimental results show that the estimated parameters have lesser bias compared with the direct method and the estimation error is reduced by 5-10 dB relative to the direct method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the problem of parameter estimation from real-valued multi-tone signals. Such problems arise frequently in spectral estimation. More recently, they have gained new importance in finite-rate-of-innovation signal sampling and reconstruction. The annihilating filter is a key tool for parameter estimation in these problems. The standard annihilating filter design has to be modified to result in accurate estimation when dealing with real sinusoids, particularly because the real-valued nature of the sinusoids must be factored into the annihilating filter design. We show that the constraint on the annihilating filter can be relaxed by making use of the Hilbert transform. We refer to this approach as the Hilbert annihilating filter approach. We show that accurate parameter estimation is possible by this approach. In the single-tone case, the mean-square error performance increases by 6 dB for signal-to-noise ratio (SNR) greater than 0 dB. We also present experimental results in the multi-tone case, which show that a significant improvement (about 6 dB) is obtained when the parameters are close to 0 or pi. In the mid-frequency range, the improvement is about 2 to 3 dB.