959 resultados para Solid-liquid equilibria
Resumo:
We derive analytical expressions for the propagation speed of downward combustion fronts of thin solid fuels with a background flow initially at rest. The classical combustion model for thin solid fuels that consists of five coupled reaction-convection-diffusion equations is here reduced into a single equation with the gas temperature as the single variable. For doing so we apply a two-zone combustion model that divides the system into a preheating region and a pyrolyzing region. The speed of the combustion front is obtained after matching the temperature and its derivative at the location that separates both regions.We also derive a simplified version of this analytical expression expected to be valid for a wide range of cases. Flame front velocities predicted by our analyticalexpressions agree well with experimental data found in the literature for a large variety of cases and substantially improve the results obtained from a previous well-known analytical expression
Resumo:
The metabolism of Δ(9)-tetrahydrocannabinol (THC) is relatively complex, and over 80 metabolites have been identified. However, much less is known about the formation and fate of cannabinoid conjugates. Bile excretion is known to be an important route for the elimination of phase II metabolites. A liquid chromatography-tandem mass spectrometry LC-MS/MS procedure for measuring cannabinoids in oral fluid was adapted, validated and applied to 10 bile samples. THC, 11-hydroxy-Δ(9)-tetrahydrocannabinol (11-OH-THC), 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THCCOOH), cannabinol (CBN), cannabidiol (CBD), Δ(9)-tetrahydrocannabinolic acid A (THC-A), 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol glucuronide (THCCOOH-gluc) and Δ(9)-tetrahydrocannabinol glucuronide (THC-gluc) were determined following solid-phase extraction and LC-MS/MS. High concentrations of THCCOOH-gluc were found in bile samples (range: 139-21,275 ng/mL). Relatively high levels of THCCOOH (7.7-1548 ng/mL) and THC-gluc (38-1366 ng/mL) were also measured. THC-A, the plant precursor of THC, was the only cannabinoid that was not detected. These results show that biliary excretion is an important route of elimination for cannabinoids conjugates and that their enterohepatic recirculation is a significant factor to consider when analyzing blood elimination profiles of cannabinoids. Furthermore, we suggest that the bile is the matrix of choice for the screening of phase II cannabinoid metabolites.
Resumo:
Epstein-Barr virus (EBV) contributes to the pathogenesis of post-transplant lymphoproliferative disease (PTLD) in more than 70% of cases. EBV DNAemia surveillance has been reported to assist in the prevention and treatment of PTLD in hematopoietic stem-cell transplantation (HSCT) recipients. Derived from experience in HSCT and taking into account that PCR-based EBV monitoring techniques are currently available in most solid organ transplant (SOT) centres, there is a great interest in EBV surveillance and prevention of PTLD in SOT recipients. In the present document we have tried to address from a practical perspective different important topics regarding the prevention and management of EBV-related PTLD in SOT. To this end, available information on SOT was analysed and combined with potentially useful data from HSCT and expert observations. The document is therefore structured according to different specific questions, each of them culminating in a consensus opinion of the panel of European experts, grading the answers according to internationally recognized levels of evidence. The addressed issues were grouped under the following topics. (i) Timing and epidemiological data of PTLD. Prophylaxis guided by clinical risk factors of early and late PTLD in SOT. (ii) Relationship of EBV DNAemia load monitoring and the development of PTLD in solid organ transplant recipients. (iii) Monitoring of EBV DNAemia after SOT. Which population should be monitored? What is the optimal timing of the monitoring? (iv) Management of SOT recipients with persistent and/or increasing EBV DNAemia.
Resumo:
Saffaj et al. recently criticized our method of monitoring carbon dioxide in human postmortem cardiac gas samples using Headspace-Gas Chromatography-Mass Spectrometry. According to the authors, their demonstration, based on the latest SFSTP guidelines (established after 2007 [1,2]) fitted for the validation of drug monitoring bioanalytical methods, has put in evidence potential errors. However, our validation approach was built using SFSTP guidelines established before 2007 [3-6]. We justify the use of these guidelines because of the post-mortem context of the study (and not clinical) and the gaseous state of the sample (and not solid or liquid). Using these guidelines, our validation remains correct.
Resumo:
Other Audit Reports - Waste Management
Resumo:
Other Audit Reports
Resumo:
Other Audit Reports
Resumo:
Other Audit Reports
Resumo:
Other Audit Reports
Resumo:
Other Audit Reports
Resumo:
Other Audit Reports
Resumo:
The late Variscan (275-278 Ma) Pribram uranium deposit is one of the largest known accumulations of uraniferous bitumens in hydrothermal veins. The deposit extends along the northwestern boundary of the Central Bohemian pluton (345-335 Ma) with low-grade metamorphosed Late Proterozoic and unmetamorphosed Cambrian rocks. From a net uranium production of 41,742 metric tons (t), more than 6,000 t were extracted from bitumen-uraninite ores during 43 years of exploration and mining. Three morphological varieties of solid bitumen are recognized: globular, asphaltlike, and cokelike. While the globular bitumen is uranium free, the other two types are uraniferous. The amount of bitumen in ore veins gradually decreases toward the contact with the plutonic body and increases with depth. Two types of bitumen microtextures are recognized using high-resolution transmission electron microscopy: amorphous and microporous, the former being less common in uraniferous samples. A lower Raman peak area ratio (1,360/1,575 cm(-1)) in mineralized bitumens (0.9) compared with uranium-free samples (2.0) indicates a lower degree of microtextural organization in the latter The H/C and O/C atomic ratios in uranium-free bitumens (0.9-1.1 and 0.09, respectively) are higher than those in mineralized samples (H/C = 0.3-0.8, O/C = 0.03-0.09). The chloroform extractable matter yield is Very low in uranium-free bitumens (0.30-0.35% of the total organic carbon,TOC) and decreases with uranium content increase. The extracted solid uraniferous bitumen infrared spectra show depletion in aliphatic CH2 and CH3 groups compared to uranium-free samples. The concentration of oxygen-bearing functional groups relative to aromatic bonds in the IR spectra of uranium-free and mineralized bitumen, however, do not differ significantly. C-13 NMR confirmed than the aromaticity of a uraniferous sample is higher (F-ar = 0.61) than in the uranium-free bitumen (F-ar = 0.51). Pyrolysates from uraniferous and nonuraniferous bitumens do not differ significantly, being predominantly cresol, alkylphenols, alkylbenzenes, and alkylnaphthalenes. The liquid pyrolysate yield decreases significantly with increasing uranium content. The delta(13)C Values of bulk uranium-free bitumens and low-grade uraniferous, asphaltlike bitumens range from -43.6 to 52.3 per mil. High-grade, cokelike, uraniferous bitumens are more C-13 depleted (54.5 to -58.4 parts per thousand). In contrast to the very light isotopic ratios of the high-grade uraniferous cokelike bitumen bulk carbon, the individual n-alkanes and isoprenoids (pristane and phytane) extracted from the same sample are significantly C-13 enriched. The isotopic composition of the C13-24 n-alkanes extracted from the high-grade uraniferous sample (delta(13)C = -28.0 to 32.6 parts per thousand) are heavier compared with the same compounds in a uranium-free sample (delta(13)C = 31.9 to 33.8 parts per thousand). It is proposed that the bitumen source was the isotopically light (delta(13)C = 35.8 to 30.2 parts per thousand) organic matter of the Upper Proterozoic host rocks that were pyrolyzed during intrusion of the Central Bohemian pluton. The C-13- depleted pyrolysates were mobilized from the innermost part of the contact-metamorphic aureole, accumulated in structural traps in less thermally influenced parts of the sedimentary complex and were later extracted by hydrothermal fluids. Bitumens at the Pribram deposit are younger than the main part of the uranium mineralization and were formed through water-washing and radiation-induced polymerization of both the gaseous and liquid pyrolysates. Direct evidence for pyrolysate reduction of uranium in the hydrothermal system is difficult to obtain as the chemical composition of the original organic fluid phase was modified during water-washing and radiolytic alteration. However, indirect evidence-e.g., higher O/C atomic ratios in uranium-free bitumens (0.1) relative to the Upper Proterozoic source rocks (0.02-0.05), isotopically very light carbon in associated whewellite (delta(13)C = 31.7 to -28.4 parts per thousand), and the striking absence of bitumens in the pre-uranium, hematite stage of the mineralization-indicates that oxidation of organic fluids may have contributed to lowering of aO(2) and uraninite precipitation.