980 resultados para Solar cooling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential emission measures (DEMs) during the impulsive phase of solar flares were constructed using observations from the EUV Variability Experiment (EVE) and the Markov-Chain Monte Carlo method. Emission lines from ions formed over the temperature range log Te = 5.8-7.2 allow the evolution of the DEM to be studied over a wide temperature range at 10 s cadence. The technique was applied to several M- and X-class flares, where impulsive phase EUV emission is observable in the disk-integrated EVE spectra from emission lines formed up to 3-4 MK and we use spatially unresolved EVE observations to infer the thermal structure of the emitting region. For the nine events studied, the DEMs exhibited a two-component distribution during the impulsive phase, a low-temperature component with peak temperature of 1-2 MK, and a broad high-temperature component from 7 to 30 MK. A bimodal high-temperature component is also found for several events, with peaks at 8 and 25 MK during the impulsive phase. The origin of the emission was verified using Atmospheric Imaging Assembly images to be the flare ribbons and footpoints, indicating that the constructed DEMs represent the spatially average thermal structure of the chromospheric flare emission during the impulsive phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatively few measurements of the solar phase function of cometary nuclei exist, despite the importance of this parameter in determining accurate sizes and its use in modeling surface properties. We make use of robotic telescopes and servicemode observing to monitor cometary nuclei over months at a time, combining intensive observations at a single epoch with regular short light-curve segments to efficiently account for brightness changes due to both nucleus rotation and changing solar phase angle. We present our latest results on comets 8P/Tuttle, 14P/Wolf, 67P/Churyumov- Gerasimenko and 110P/Hartley 3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low cost solar collector was developed by using polymeric components as opposed to metal and glass components of traditional solar collectors. In order to utilize polymers for the absorber of the solar collector, Carbon Nanotubes (CNT) has been added as a filler to improve the thermal conductivity and the solar absorptivity of polymers. The solar collector was designed as a multi-layer construction with considering the economic manufacturing. Through the mathematical heat transfer analysis, the performance and characteristics of the designed solar collector have been estimated. Furthermore, the prototypes of the proposed system were built and tested at a state-of-the-art solar simulator facility to evaluate the actual performance of the developed solar collector. The cost-effective polymer-CNT solar collector, which achieved efficiency as much as that of a conventional glazed flat plate solar panel, has been successfully developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT BODY: To resolve outstanding questions on heating of coronal loops, we study intensity fluctuations in inter-moss portions of active region core loops as observed with AIA/SDO. The 94Å fluctuations (Figure 1) have structure on timescales shorter than radiative and conductive cooling times. Each of several strong 94Å brightenings is followed after ~8 min by a broader peak in the cooler 335Å emission. This indicates that we see emission from the hot component of the 94Å contribution function. No hotter contributions appear, and we conclude that the 94Å intensity can be used as a proxy for energy injection into the loop plasma. The probability density function of the observed 94Å intensity has 'heavy tails' that approach zero more slowly than the tails of a normal distribution. Hence, large fluctuations dominate the behavior of the system. The resulting 'intermittence' is associated with power-law or exponential scaling of the related variables, and these in turn are associated with turbulent phenomena. The intensity plots in Figure 1 resemble multifractal time series, which are common to various forms of turbulent energy dissipation. In these systems a single fractal dimension is insufficient to describe the dynamics and instead there is a spectrum of fractal dimensions that quantify the self-similar properties. Figure 2 shows the multifractal spectrum from our data to be invariant over timescales from 24 s to 6.4 min. We compare these results to outputs from theoretical energy dissipation models based on MHD turbulence, and in some cases we find substantial agreement, in terms of intermittence, multifractality and scale invariance. Figure 1. Time traces of 94A intensity in the inter-moss portions of four AR core loops. Figure 2. Multifractal spectra showing timescale invariance. The four cases of Figure 1 are included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence has accumulated of high temperature (> 4 MK) coronal emission in active region cores that corresponds to structures in equilibrium. Other studies have found evidence of evolving loops. We investigate the EUV intensity and temperature variations of short coronal loops observed in the core of NOAA Active Region 11250 on 13 July 2011. The loops, which run directly between the AR opposite polarities, are first detectable in the 94Å band of Fe XVIII, implying an effective temperature ~ 7 MK. The low temperature component of the 94 Å signal is modeled in terms of a linear superposition of the 193 Å and 171 Å signals in order to separate the hot component. After identifying the loops we have used contemporaneous HMI observations to identify the corresponding inter-moss regions, and we have investigated their time evolution in six AIA EUV channels. The results can be separated into two classes. Group 1 (94Å, 335Å, 211Å) is characterized by hotter temperatures (~2-7 MK), and Group 2 (193Å, 171Å, 131Å) by cooler temperatures (0.4 - 1.6 MK). For Group 1 the intensity peaks in the 94Å channel are followed by maxima in the 335 Å channel with a time lag of ~8 min, suggestive of a cooling pattern with an exponential decay. While the 211Å maxima follow those in the 335 Å channel, there is no systematic relation which would indicate a progressive cooling process through the lower temperatures, as has been observed in other investigations. In Group 2 the signals in the 171 and 131Å channels track each other closely, and lag behind the 193Å. In the inter-moss region of the loop the peak temperature and peak emission measure have opposite trends. The hot 94Å brightenings occur in the central part of the loops with maximum temperatures ~7 MK. Subsequently the loops appear to fill with plasma with an emission measure compatible with the 193 Å signal and temperature in the range ~ 1.5-2 MK. Although the exact details of the time evolution are still under investigation, these non static loops show high levels of intermittency in the 94Å signal (please see poster "Intermittent and Scale-Invariant Intensity Fluctuations in Hot Coronal Loops," by Lawrence et al. in this session).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our early results. SOFIA (+FORCAST [1]) mid- to far-IR images and spectroscopy (~5-35 μm) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h≈1.18 AU). Dust characteristics, identified through the 10 μm silicate emission feature and its strength [2], as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 μm, and near 16, 19, 23.5, 27.5, and 33 μm are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) [3,4,5] and C/2001 Q4 (NEAT) [6]) to large and/or compact grains (e.g., C/2007 N4 (Lulin) [7] and C/2006 P1 (McNaught) [8]). Measurement of the crystalline peaks in contrast to the broad 10 and 20 μm amorphous silicate features yields the cometary silicate crystalline mass fraction [9], which is a benchmark for radial transport in our protoplanetary disk [10]. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals [11]. Only SOFIA can look for cometary organics in the 5-8 μm region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_h<0.4 AU, near Nov-20--Dec-03 UT) were proposed for by the ISON-DST Team. Comet ISON is the first comet since comet Ikeya-Seki (1965f) [12,13] suitable for studying the alkalai metals Na and K and the atoms specifically attributed to dust grains including Mg, Si, Fe, as well as Ca. DST's Horizontal Grating Spectrometer (HGS) measures 4 settings: Na I, K, C2 to sample cometary organics (along with Mg I), and [O I] as a proxy for activity from water [14] (along with Si I and Fe I). State-of-the-art instruments that will also be employed include IBIS [15], which is a Fabry-Perot spectral imaging system that concurrently measures lines of Na, K, Ca II, or Fe, and ROSA (CSUN/QUB) [16], which is a rapid imager that simultaneously monitors Ca II or CN. From McMath-Pierce, the Solar-Stellar Spectrograph also will target ISON (320-900 nm, R~21,000, r_h

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the Rapid Oscillation in the Solar Atmosphere (ROSA) instrument at the Dunn Solar Telescope we have found that the spectra of fluctuations of the G-band (cadence 1.05 s) and Ca II K-line (cadence 4.2 s) intensities show correlated fluctuations above white noise out to frequencies beyond 300 mHz and up to 70 mHz, respectively. The noise-corrected G-band spectrum presents a scaling range (Ultra High Frequency “UHF”) for f = 25-100 mHz, with an exponent consistent with the presence of turbulent motions. The UHF power, is concentrated at the locations of magnetic bright points in the intergranular lanes, it is highly intermittent in time and characterized by a positive kurtosis κ. Combining values of G-band and K-line intensities, the UHF power, and κ, reveals two distinct “states” of the internetwork solar atmosphere. State 1, with κ ≍ 6, which includes almost all the data, is characterized by low intensities and low UHF power. State 2, with κ ≍ 3, including a very small fraction of the data, is characterized by high intensities and high UHF power. Superposed epoch analysis shows that for State 1, the K-line intensity presents 3.5 min chromospheric oscillations with maxima occurring 21 s after G-band intensity maxima implying a 150-210 km effective height difference. For State 2, the G-band and K-line intensity maxima are simultaneous, suggesting that in the highly magnetized environment sites of G-band and K-line emission may be spatially close together. Analysis of observations obtained with Hinode/SOT confirm a scaling range in the G-band spectrum up to 53 mHz also consistent with turbulent motions as well as the identification of two distinct states in terms of the H-line intensity and G-band power as functions of G-band intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-frequency fluctuations are observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument (Jess et al. 2010, Solar Phys, 261, 363) at the Dunn Solar Telescope. This can produce simultaneous observations in up to six channels, at different heights in the photosphere and chromosphere, at an unprecedentedly high cadence of 0.5 seconds, and at a spatial resolution of 100 km after photometrically correct speckle reconstruction. Here we concentrate on observations at two levels. The first is in the G-band of the CH radical at 4305.5Å, bandpass 9.2Å, with height of formation z <250 km at a cadence of 0.525 sec corresponding to Nyquist frequency 950 mHz. The second is in the Ca II K-line core at 3933.7Å, bandpass 1.0Å, with height of formation z <1300 km, and cadence 4.2 sec giving Nyquist frequency 120 mHz. The data span 53 min, and the maximum field of view is 45 Mm. The data were taken on 28 May 2009 in internetwork and network near disk center. Using both Fourier and Morlet wavelet methods we find evidence in the G-band spectra for intensity fluctuations above noise out to frequencies f >> 100 mHz. The K-line signal is noisier and is seen only for f <50 mHz. With wavelet techniques we find that G-band spectral power with 20 <f <100 mHz is clearly concentrated in the intergranular lanes and especially at the locations of magnetic elements indicated by G-band bright points. This wavelet power is highly intermittent in time. By cross-correlating the data we find that pulses of high-frequency G-band power in the photosphere tend to be followed by increases in K-line emission in the chromosphere with a time lag of about 2 min.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rapid Oscillations in the Solar Atmosphere (ROSA) instrument is a synchronized, six-camera high-cadence solar imaging instrument developed by Queen's University Belfast and recently commissioned at the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, USA, as a common-user instrument. Consisting of six 1k x 1k Peltier-cooled frame-transfer CCD cameras with very low noise (0.02 - 15 e/pixel/s), each ROSA camera is capable of full-chip readout speeds in excess of 30 Hz, and up to 200 Hz when the CCD is windowed. ROSA will allow for multi-wavelength studies of the solar atmosphere at a high temporal resolution. We will present the current instrument set-up and parameters, observing modes, and future plans, including a new high QE camera allowing 15 Hz for Halpha. Interested parties should see https://habu.pst.qub.ac.uk/groups/arcresearch/wiki/de502/ROSA.html

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EU targets require nearly zero energy buildings (NZEB) by 2020. However few monitored examples exist of how NZEB has been achieved in practise in individual residential buildings. This paper provides an example of how a low-energy building (built in 2006), has achieved nearly zero energy heating through the addition of a solar domestic hot water and space heating system (“combi system”) with a Seasonal Thermal Energy Store (STES). The paper also presents a cumulative life cycle energy and cumulative life cycle carbon analysis for the installation based on the recorded DHW and space heating demand in addition to energy payback periods and net energy ratios. In addition, the carbon and energy analysis is carried out for four other heating system scenarios including hybrid solar thermal/PV systems in order to obtain the optimal system from a carbon efficiency perspective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dye-sensitized solar cells (DSCs) are promising alternatives to conventional silicon devices because of their simple fabrication procedure, low cost, and high efficiency. Platinum is generally used as a superior counter electrode (CE) material, but the disadvantages such as high cost and low abundance greatly restrict the large-scale application of DSCs. An efficient and sustainable way to overcome the limited supply of Pt is the development of high-efficiency Pt-free CE materials, which should possess both high electrical conductivity and superior electrocatalytic activity simultaneously. Herein, for the first time, a two-step strategy to synthesize ruthenium dioxide (RuO2) nanocrystals is reported, and it is shown that RuO2 catalysts exhibit promising electrocatalytic activity towards triiodide reduction, which results in comparable energy conversion efficiency to that of conventional Pt CEs. More importantly, by virtue of first-principles calculations, the catalytic mechanism of electrocatalysis for triiodide reduction on various CEs is investigated systematically and it is found that the electrochemical triiodide reduction reaction on RuO2 catalyst surfaces can be enhanced significantly, owing to the ideal combination of good electrocatalytic activity and high electrical conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platinum (Pt) nanocrystals have demonstrated to be an effective catalyst in many heterogeneous catalytic processes. However, pioneer facets with highest activity have been reported differently for various reaction systems. Although Pt has been the most important counter electrode material for dye-sensitized solar cells (DSCs), suitable atomic arrangement on the exposed crystal facet of Pt for triiodide reduction is still inexplicable. Using density functional theory, we have investigated the catalytic reaction processes of triiodide reduction over {100}, {111} and {411} facets, indicating that the activity follows the order of Pt(111) > Pt(411) > Pt(100). Further, Pt nanocrystals mainly bounded by {100}, {111} and {411} facets were synthesized and used as counter electrode materials for DSCs. The highest photovoltaic conversion efficiency of Pt(111) in DSCs confirms the predictions of the theoretical study. These findings have deepened the understanding of the mechanism of triiodide reduction at Pt surfaces and further screened the best facet for DSCs successfully.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. We investigated the response of the solar atmosphere to non-thermal electron beam heating using the radiative transfer and hydrodynamics modelling code RADYN. The temporal evolution of the parameters that describe the non-thermal electron energy distribution were derived from hard X-ray observations of a particular flare, and we compared the modelled and observed parameters.

Methods. The evolution of the non-thermal electron beam parameters during the X1.5 solar flare on 2011 March 9 were obtained from analysis of RHESSI X-ray spectra. The RADYN flare model was allowed to evolve for 110 s, after which the electron beam heating was ended, and was then allowed to continue evolving for a further 300 s. The modelled flare parameters were compared to the observed parameters determined from extreme-ultraviolet spectroscopy.

Results. The model produced a hotter and denser flare loop than that observed and also cooled more rapidly, suggesting that additional energy input in the decay phase of the flare is required. In the explosive evaporation phase a region of high-density cool material propagated upward through the corona. This material underwent a rapid increase in temperature as it was unable to radiate away all of the energy deposited across it by the non-thermal electron beam and via thermal conduction. A narrow and high-density (ne ≤ 1015 cm-3) region at the base of the flare transition region was the source of optical line emission in the model atmosphere. The collision-stopping depth of electrons was calculated throughout the evolution of the flare, and it was found that the compression of the lower atmosphere may permit electrons to penetrate farther into a flaring atmosphere compared to a quiet Sun atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using advanced numerical magneto-hydrodynamic simulations of the magnetized solar photosphere, including non-gray radiative transport and a non-ideal equation of state, we analyze plasma motions in photospheric magnetic vortices. We demonstrate that apparent vortex-like motions in photospheric magnetic field concentrations do not exhibit "tornado"-like behavior or a "bath-tub" effect. While at each time instance the velocity field lines in the upper layers of the solar photosphere show swirls, the test particles moving with the time-dependent velocity field do not demonstrate such structures. Instead, they move in a wave-like fashion with rapidly changing and oscillating velocity field, determined mainly by magnetic tension in the magnetized intergranular downflows. Using time-distance diagrams, we identify horizontal motions in the magnetic flux tubes as torsional Alfvén perturbations propagating along the nearly vertical magnetic field lines with local Alfvén speed.