950 resultados para Smooth muscle contractility


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several P2X receptor subunits were recently cloned; of these, one was cloned from the rat vas deferens (P2X1) and another from pheochromocytoma (PC12) cells differentiated with nerve growth factor (P2X2). Peptides corresponding to the C-terminal portions of the predicted receptor proteins (P2X1 391-399 and P2X2 460-472) were used to generate antisera in rabbits. The specificities of antisera were determined by staining human embryonic kidney cells stably transfected with either P2X1 or P2X2 receptors and by absorption controls with the cognate peptides. In the vas deferens and the ileal submucosa, P2X1 immunoreactivity (ir) was restricted to smooth muscle, whereas P2X2-ir was restricted to neurons and their processes. Chromaffin cells of the adrenal medulla and PC12 cells contained both P2X1- and P2X2-ir. P2X1-ir was also found in smooth muscle cells of the bladder, cardiac myocytes, and nerve fibers and terminals in the superficial dorsal horn of the spinal cord. In contrast, P2X2-ir was observed in scattered cells of the anterior pituitary, neurons in the hypothalamic arcuate and paraventricular nuclei, and catecholaminergic neurons in the olfactory bulb, the substantia nigra, ventral tegmental area, and locus coeruleus. A plexus of nerve fibers and terminals in the nucleus of the solitary tract contained P2X2-ir. This staining disappeared after nodose ganglionectomy, consistent with a presynaptic function. The location of the P2X1 subunit in smooth muscle is consistent with its role as a postjunctional receptor in autonomic transmission, while in neurons, these receptors appear in both postsynaptic and presynaptic locations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At birth, pulmonary vasodilation occurs as air-breathing life begins. The mechanism of O2-induced pulmonary vasodilation is unknown. We proposed that O2 causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel (KCa) via a cyclic nucleotide-dependent kinase. We tested this hypothesis in hemodynamic studies in acutely prepared fetal lambs and in patch-clamp studies on resistance fetal pulmonary artery smooth muscle cells. Fetal O2 tension (PaO2) was increased by ventilating the ewe with 100% O2, causing fetal total pulmonary resistance to decrease from 1.18 +/- 0.14 to 0.41 +/- 0.03 mmHg per ml per min. Tetraethylammonium and iberiotoxin, preferential KCa-channel inhibitors, attenuated O2-induced fetal pulmonary vasodilation, while glibenclamide, an ATP-sensitive K+-channel antagonist, had no effect. Treatment with either a guanylate cyclase antagonist (LY83583) or cyclic nucleotide-dependent kinase inhibitors (H-89 and KT 5823) significantly attenuated O2-induced fetal pulmonary vasodilation. Under hypoxic conditions (PaO2 = 25 mmHg), whole-cell K+-channel currents (Ik) were small and were inhibited by 1 mM tetraethylammonium or 100 nM charybdotoxin (CTX; a specific KCa-channel blocker). Normoxia (PaO2 = 120 mmHg) increased Ik by more than 300%, and this was reversed by 100 nM CTX. Nitric oxide also increased Ik. Resting membrane potential was -37.2 +/- 1.9 mV and cells depolarized on exposure to CTX, while hyperpolarizing in normoxia. We conclude that O2 causes fetal pulmonary vasodilation by stimulating a cyclic nucleotide-dependent kinase, resulting in KCa-channel activation, membrane hyperpolarization, and vasodilation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At least three distinct beta-adrenergic receptor (beta-AR) subtypes exist in mammals. These receptors modulate a wide variety of processes, from development and behavior, to cardiac function, metabolism, and smooth muscle tone. To understand the roles that individual beta-AR subtypes play in these processes, we have used the technique of gene targeting to create homozygous beta 1-AR null mutants (beta 1-AR -/-) in mice. The majority of beta 1-AR -/- mice die prenatally, and the penetrance of lethality shows strain dependence. Beta l-AR -/- mice that do survive to adulthood appear normal, but lack the chronotropic and inotropic responses seen in wild-type mice when beta-AR agonists such as isoproterenol are administered. Moreover, this lack of responsiveness is accompanied by markedly reduced stimulation of adenylate cyclase in cardiac membranes from beta 1-AR -/- mice. These findings occur despite persistent cardiac beta 2-AR expression, demonstrating the importance of beta 1-ARs for proper mouse development and cardiac function, while highlighting functional differences between beta-AR subtypes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

rho-like GTP binding proteins play an essential role in regulating cell growth and actin polymerization. These molecular switches are positively regulated by guanine nucleotide exchange factors (GEFs) that promote the exchange of GDP for GTP. Using the interaction-trap assay to identify candidate proteins that bind the cytoplasmic region of the LAR transmembrane protein tyrosine phosphatase (PT-Pase), we isolated a cDNA encoding a 2861-amino acid protein termed Trio that contains three enzyme domains: two functional GEF domains and a protein serine/threonine kinase (PSK) domain. One of the Trio GEF domains (Trio GEF-D1) has rac-specific GEF activity, while the other Trio GEF domain (Trio GEF-D2) has rho-specific activity. The C-terminal PSK domain is adjacent to an Ig-like domain and is most similar to calcium/calmodulin-dependent kinases, such as smooth muscle myosin light chain kinase which similarly contains associated Ig-like domains. Near the N terminus, Trio has four spectrin-like repeats that may play a role in intracellular targeting. Northern blot analysis indicates that Trio has a broad tissue distribution. Trio appears to be phosphorylated only on serine residues, suggesting that Trio is not a LAR substrate, but rather that it forms a complex with LAR. As the LAR PTPase localizes to the ends of focal adhesions, we propose that LAR and the Trio GEF/PSK may orchestrate cell-matrix and cytoskeletal rearrangements necessary for cell migration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The extracellular matrix (ECM) is an intricate network composed of an array of macromolecules capable of regulating the functional responsiveness of cells. Its composition greatly varies among different types of tissue, and dysregulation of its metabolism may contribute to vascular remodeling during the pathogenesis of various diseases, including atherosclerosis. In view of their antiatherosclerotic effects, the role of Ca2+ channel blockers in the metabolism of ECM was examined. Nanomolar concentrations of the five Ca2+ channel blockers amlodipine, felodipine, manidipine, verapamil, or diltiazem significantly decreased both the constitutive and platelet-derived growth factor BB-dependent collagen deposition in the ECM formed by human vascular smooth muscle cells and fibroblasts. The drugs inhibited the expression of fibrillar collagens type I and III and of basement membrane type IV collagen. Furthermore, Ca2+ channel blockers specifically increased the proteolytic activity of the 72-kDa type IV collagenase as shown by gelatin zymography and inhibited the transcription of tissue inhibitor of metalloproteinases-2.