956 resultados para Small x QCD
Resumo:
Aim A recent Monte Carlo based study has shown that it is possible to design a diode that measures small field output factors equivalent to that in water. This is accomplished by placing an appropriate sized air gap above the silicon chip (1) with experimental results subsequently confirming that a particular Monte Carlo design was accurate (2). The aim of this work was to test if a new correction-less diode could be designed using an entirely experimental methodology. Method: All measurements were performed on a Varian iX at a depth of 5 cm, SSD of 95 cm and field sizes of 5, 6, 8, 10, 20 and 30 mm. Firstly, the experimental transfer of kq,clin,kq,msr from a commonly used diode detector (IBA, stereotactic field diode (SFD)) to another diode detector (Sun Nuclear, unshielded diode, (EDGEe)) was tested. These results were compared to Monte Carlo calculated values of the EDGEe. Secondly, the air gap above the EDGEe silicon chip was optimised empirically. Nine different air gap “tops” were placed above the EDGEe (air depth = 0.3, 0.6, 0.9 mm; air width = 3.06, 4.59, 6.13 mm). The sensitivity of the EDGEe was plotted as a function of air gap thickness for the field sizes measured. Results: The transfer of kq,clin,kq,msr from the SFD to the EDGEe was correct to within the simulation and measurement uncertainties. The EDGEe detector can be made “correction-less” for field sizes of 5 and 6 mm, but was ∼2% from being “correction-less” at field sizes of 8 and 10 mm. Conclusion Different materials will perturb small fields in different ways. A detector is only “correction-less” if all these perturbations happen to cancel out. Designing a “correction-less” diode is a complicated process, thus it is reasonable to expect that Monte Carlo simulations should play an important role.
Resumo:
This paper is about localising across extreme lighting and weather conditions. We depart from the traditional point-feature-based approach as matching under dramatic appearance changes is a brittle and hard thing. Point feature detectors are fixed and rigid procedures which pass over an image examining small, low-level structure such as corners or blobs. They apply the same criteria applied all images of all places. This paper takes a contrary view and asks what is possible if instead we learn a bespoke detector for every place. Our localisation task then turns into curating a large bank of spatially indexed detectors and we show that this yields vastly superior performance in terms of robustness in exchange for a reduced but tolerable metric precision. We present an unsupervised system that produces broad-region detectors for distinctive visual elements, called scene signatures, which can be associated across almost all appearance changes. We show, using 21km of data collected over a period of 3 months, that our system is capable of producing metric localisation estimates from night-to-day or summer-to-winter conditions.
Resumo:
Understanding the organisational processes driving quality primary care is crucial to the maintaining and improving practice. Qualitative methods are increasingly popular in health services research, but this area is dominated by interview studies. Multiple qualitative methods are rarely used in a systematically integrated fashion. We developed a method to study small primary health care organizations using rapid appraisal and qualitative mixed methods: Q-RARA – Qualitative Rapid Appraisal, Rigorous Analysis
Resumo:
Understanding the interactions of small molecules with gold nanoparticles is important for controlling their surface chemistry and, hence, how they can be used in specific applications. The interaction of iodoperfluorobenzene compounds with gold nanoparticles was investigated by UV-Vis difference spectroscopy, surface enhanced Raman spectroscopy (SERS) and Synchrotron X-ray photoelectron spectroscopy (XPS). Results from UV-Vis difference spectroscopy demonstrated that iodoperfluorobenzene compounds undergo charge transfer complexation with gold nanoparticles. SERS of the small molecule–gold nanoparticle adducts provided further evidence for formation of charge transfer complexes, while Synchrotron X-ray photoelectron spectroscopy provided evidence of the binding mechanism. Demonstration of interactions of iodoperfluorobenzene compounds with gold nanoparticles further expands the molecular toolbox that is available for functionalising gold nanoparticles and has significant potential for expanding the scope for generation of hybrid halogen bonded materials.
Resumo:
Establishment of asymptomatic bacteriuria (ABU) with Escherichia coli 83972 is a viable prophylactic alternative to antibiotic therapy for the prevention of recurrent bacterial urinary tract infection in humans. Approximately 2 x 108 viable E. coli 83972 cells were introduced into the bladder of six healthy female dogs via a sterile urinary catheter. The presence of pyuria, depression, stranguria, pollakiuria and haematuria was documented for 6 weeks and urinalysis and aerobic bacterial cultures were performed every 24–72 h. Pyuria was present in all dogs on day 1 post-inoculation and 4/6 dogs (67%) had a positive urine culture on this day. Duration of colonization ranged from 0 to 10 days (median 4 days). Four dogs were re-inoculated on day 20. Duration of colonization following the second inoculation ranged from 1 to 3 days. No dog suffered pyrexia or appeared systemically unwell but all dogs initially exhibited mild pollakiuria and a small number displayed gross haematuria and/or stranguria. By day 3 of each trial all clinical signs had resolved. Persistent bacteriuria was not achieved in any dog but two dogs were colonized for 10 days following a single inoculation. Further research is required to determine whether establishment of ABU in dogs with recurrent urinary tract infection is a viable alternative to repeated doses of antimicrobial agents.
Resumo:
A new strategy for rapidly selecting and testing genetic vaccines has been developed, in which a whole genome library is cloned into a bacteriophage λ ZAP Express vector which contains both prokaryotic (Plac) and eukaryotic (PCMV) promoters upstream of the insertion site. The phage library is plated on Escherichia coli cells, immunoblotted, and probed with hyperimmune and/or convalescent-phase antiserum to rapidly identify vaccine candidates. These are then plaque purified and grown as liquid lysates, and whole bacteriophage particles are then used directly to immunize the host, following which PCMV-driven expression of the candidate vaccine gene occurs. In the example given here, a semirandom genome library of the bovine pathogen Mycoplasma mycoides subsp. mycoides small colony (SC) biotype was cloned into λ ZAP Express, and two strongly immunodominant clones, λ-A8 and λ-B1, were identified and subsequently tested for vaccine potential against M. mycoides subsp. mycoides SC biotype-induced mycoplasmemia. Sequencing and immunoblotting indicated that clone λ-A8 expressed an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible M. mycoides subsp. mycoides SC biotype protein with a 28-kDa apparent molecular mass, identified as a previously uncharacterized putative lipoprotein (MSC_0397). Clone λ-B1 contained several full-length genes from the M. mycoides subsp. mycoides SC biotype pyruvate dehydrogenase region, and two IPTG-independent polypeptides, of 29 kDa and 57 kDa, were identified on immunoblots. Following vaccination, significant anti-M. mycoides subsp. mycoides SC biotype responses were observed in mice vaccinated with clones λ-A8 and λ-B1. A significant stimulation index was observed following incubation of splenocytes from mice vaccinated with clone λ-A8 with whole live M. mycoides subsp. mycoides SC biotype cells, indicating cellular proliferation. After challenge, mice vaccinated with clone λ-A8 also exhibited a reduced level of mycoplasmemia compared to controls, suggesting that the MSC_0397 lipoprotein has a protective effect in the mouse model when delivered as a bacteriophage DNA vaccine. Bacteriophage-mediated immunoscreening using an appropriate vector system offers a rapid and simple technique for the identification and immediate testing of putative candidate vaccines from a variety of pathogens.
Resumo:
Archaeology has been called 'the science of the artefact' and nothing demonstrates this point better than the current interest displayed in provenance studies of archaeological objects. In theory, every vessel carries a chemical compositional pattern or 'fingerprint' identical with the clay from which it was made and this relationship is basic to provenance studies. The reasoning behind provenance or sourcing studies is to probe into this past and attempt to re-create prehistory by obtaining information on exchange and social interaction. This paper discusses the use of XRF spectrometry for the analysis of ancient pottery and ceramics to examine whether it is possible to predict prehictoric cultural exchanges.
Resumo:
Purpose Two diodes which do not require correction factors for small field relative output measurements are designed and validated using experimental methodology. This was achieved by adding an air layer above the active volume of the diode detectors, which canceled out the increase in response of the diodes in small fields relative to standard field sizes. Methods Due to the increased density of silicon and other components within a diode, additional electrons are created. In very small fields, a very small air gap acts as an effective filter of electrons with a high angle of incidence. The aim was to design a diode that balanced these perturbations to give a response similar to a water-only geometry. Three thicknesses of air were placed at the proximal end of a PTW 60017 electron diode (PTWe) using an adjustable “air cap”. A set of output ratios (ORfclin Det ) for square field sizes of side length down to 5 mm was measured using each air thickness and compared to ORfclin Det measured using an IBA stereotactic field diode (SFD). k fclin, f msr Qclin,Qmsr was transferred from the SFD to the PTWe diode and plotted as a function of air gap thickness for each field size. This enabled the optimal air gap thickness to be obtained by observing which thickness of air was required such that k fclin, f msr Qclin,Qmsr was equal to 1.00 at all field sizes. A similar procedure was used to find the optimal air thickness required to make a modified Sun Nuclear EDGE detector (EDGEe) which s “correction-free” in small field relative dosimetry. In addition, the feasibility of experimentally transferring k fclin, f msr Qclin,Qmsr values from the SFD to unknown diodes was tested by comparing the experimentally transferred k fclin, f msr Qclin,Qmsr values for unmodified PTWe and EDGEe diodes to Monte Carlo simulated values. Results 1.0 mm of air was required to make the PTWe diode correction-free. This modified diode (PTWeair) produced output factors equivalent to those in water at all field sizes (5–50 mm). The optimal air thickness required for the EDGEe diode was found to be 0.6 mm. The modified diode (EDGEeair) produced output factors equivalent to those in water, except at field sizes of 8 and 10 mm where it measured approximately 2% greater than the relative dose to water. The experimentally calculated k fclin, f msr Qclin,Qmsr for both the PTWe and the EDGEe diodes (without air) matched Monte Carlo simulated results, thus proving that it is feasible to transfer k fclin, f msr Qclin,Qmsr from one commercially available detector to another using experimental methods and the recommended experimental setup. Conclusions It is possible to create a diode which does not require corrections for small field output factor measurements. This has been performed and verified experimentally. The ability of a detector to be “correction-free” depends strongly on its design and composition. A nonwater-equivalent detector can only be “correction-free” if competing perturbations of the beam cancel out at all field sizes. This should not be confused with true water equivalency of a detector.