994 resultados para Small Parameter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OGY method is the most important method of controlling chaos. It stabilizes a hyperbolic periodic orbit by making small perturbations for a system parameter. This paper improves the method of choosing parameter, and gives a mathematics proof of it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method for the fast and direct extraction of model parameters for capacitive MEMS resonators from their measured transmission response such as quality factor, resonant frequency, and motional resistance. We show that these parameters may be extracted without having to first de-embed the resonator motional current from the feedthrough. The series and parallel resonances from the measured electrical transmission are used to determine the MEMS resonator circuit parameters. The theoretical basis for the method is elucidated by using both the Nyquist and susceptance frequency response plots, and applicable in the limit where CF > CmQ; commonly the case when characterizing MEMS resonators at RF. The method is then applied to the measured electrical transmission for capacitively transduced MEMS resonators, and compared against parameters obtained using a Lorentzian fit to the measured response. Close agreement between the two methods is reported herein. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method for fast and accurate determination of parameters relevant to the characterization of capacitive MEMS resonators like quality factor (Q), resonant frequency (fn), and equivalent circuit parameters such as the motional capacitance (Cm). In the presence of a parasitic feedthrough capacitor (CF) appearing across the input and output ports, the transmission characteristic is marked by two resonances: series (S) and parallel (P). Close approximations of these circuit parameters are obtained without having to first de-embed the resonator motional current typically buried in feedthrough by using the series and parallel resonances. While previous methods with the same objective are well known, we show that these are limited to the condition where CF ≪ CmQ. In contrast, this work focuses on moderate capacitive feedthrough levels where CF > CmQ, which are more common in MEMS resonators. The method is applied to data obtained from the measured electrical transmission of fabricated SOI MEMS resonators. Parameter values deduced via direct extraction are then compared against those obtained by a full extraction procedure where de-embedding is first performed and followed by a Lorentzian fit to the data based on the classical transfer function associated with a generic LRC series resonant circuit. © 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode I steady-state crack growth is analyzed under plane strain conditions in small scale yielding. The elastic-plastic solid is characterized by the mechanism-based strain gradient (MSG) plasticity theory [J. Mech. Phys. Solids 47 (1999) 1239, J. Mech. Phys. Solids 48 (2000) 99]. The distributions of the normal separation stress and the effective stress along the plane ahead of the crack tip are computed using a special finite element method based on the steady-state fundamental relations and the MSG flow theory. The results show that during the steady-state crack growth, the normal separation stress on the plane ahead of the crack tip can achieve considerably high value within the MSG strain gradient sensitive zone. The results also show that the crack tip fields are insensitive to the cell size parameter in the MSG theory. Moreover, in the present research, the steady-state fracture toughness is computed by adopting the embedded process zone (EPZ) model. The results display that the steady-state fracture toughness strongly depends on the separation strength parameter of the EPZ model and the length scale parameter in the MSG theory. Furthermore, in order for the results of steady crack growth to be comparable, an approximate relation between the length scale parameters in the MSG theory and in the Fleck-Hutchinson strain gradient plasticity theory is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate Bayesian computation (ABC) is a popular technique for analysing data for complex models where the likelihood function is intractable. It involves using simulation from the model to approximate the likelihood, with this approximate likelihood then being used to construct an approximate posterior. In this paper, we consider methods that estimate the parameters by maximizing the approximate likelihood used in ABC. We give a theoretical analysis of the asymptotic properties of the resulting estimator. In particular, we derive results analogous to those of consistency and asymptotic normality for standard maximum likelihood estimation. We also discuss how sequential Monte Carlo methods provide a natural method for implementing our likelihood-based ABC procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulations were conducted to study thermocapillary flows in short half-zone liquid bridges of molten tin with Prandtl number Pr = 0.009, under ramped temperature difference. The spatio-temporal structures in the thermocapillary flows in short half-zone liquid bridges with aspect ratios As = 0.6, 0.8, and 1.0 were investigated. The first critical Marangoni numbers were compared with those predicted by linear stability analyses (LSA). The second critical Marangoni numbers for As = 0.6 and 0.8 were found to be larger than that for As = 1.0. The time evolutions of the thermocapillary flows exhibited unusual features such as a change in the azimuthal wave number during the three-dimensional stationary (non-oscillating) flow regime, a change in the oscillation mode during the three-dimensional oscillatory flow regime, and the decreasing and then increasing of amplitudes in a single oscillation mode. The effects of the ramping rate of the temperature difference on the flow modes and critical conditions were studied as well. In this paper, the experimental observability of the critical conditions was also discussed. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many problems in control and signal processing can be formulated as sequential decision problems for general state space models. However, except for some simple models one cannot obtain analytical solutions and has to resort to approximation. In this thesis, we have investigated problems where Sequential Monte Carlo (SMC) methods can be combined with a gradient based search to provide solutions to online optimisation problems. We summarise the main contributions of the thesis as follows. Chapter 4 focuses on solving the sensor scheduling problem when cast as a controlled Hidden Markov Model. We consider the case in which the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. In sensor scheduling, our aim is to minimise the variance of the estimation error of the hidden state with respect to the action sequence. We present a novel SMC method that uses a stochastic gradient algorithm to find optimal actions. This is in contrast to existing works in the literature that only solve approximations to the original problem. In Chapter 5 we presented how an SMC can be used to solve a risk sensitive control problem. We adopt the use of the Feynman-Kac representation of a controlled Markov chain flow and exploit the properties of the logarithmic Lyapunov exponent, which lead to a policy gradient solution for the parameterised problem. The resulting SMC algorithm follows a similar structure with the Recursive Maximum Likelihood(RML) algorithm for online parameter estimation. In Chapters 6, 7 and 8, dynamic Graphical models were combined with with state space models for the purpose of online decentralised inference. We have concentrated more on the distributed parameter estimation problem using two Maximum Likelihood techniques, namely Recursive Maximum Likelihood (RML) and Expectation Maximization (EM). The resulting algorithms can be interpreted as an extension of the Belief Propagation (BP) algorithm to compute likelihood gradients. In order to design an SMC algorithm, in Chapter 8 uses a nonparametric approximations for Belief Propagation. The algorithms were successfully applied to solve the sensor localisation problem for sensor networks of small and medium size.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a n-dimensional vector fields preserving some n-form, the following conclusion is reached by the method of Lie group. That is, if it admits an one-parameter, n-form preserving symmetry group, a transformation independent of the vector field is constructed explicitly, which can reduce not only dimesion of the vector field by one, but also make the reduced vector field preserve the corresponding ( n - 1)-form. In partic ular, while n = 3, an important result can be directly got which is given by Me,ie and Wiggins in 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear non-Gaussian state-space models arise in numerous applications in control and signal processing. Sequential Monte Carlo (SMC) methods, also known as Particle Filters, are numerical techniques based on Importance Sampling for solving the optimal state estimation problem. The task of calibrating the state-space model is an important problem frequently faced by practitioners and the observed data may be used to estimate the parameters of the model. The aim of this paper is to present a comprehensive overview of SMC methods that have been proposed for this task accompanied with a discussion of their advantages and limitations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we examine the characteristics of elastic wave propagation in viscoelastic porous media, which contain simultaneously both the Biot-flow and the squirt-flow mechanisms (BISQ). The frequency-domain Green's functions for viscoelastic BISQ media are then derived based on the classic potential function methods. Our numerical results show that S-waves are only affected by viscoelasticity, but not by squirt-flows. However, the phase velocity and attenuation of fast P-waves are seriously influenced by both viscoelasticity and squirt-flows; and there exist two peaks in the attenuation-frequency variations of fast P-waves. In the low-frequency range, the squirt-flow characteristic length, not viscoelasticity, affects the phase velocity of slow P-waves, whereas it is opposite in the high-frequency range. As to the contribution of potential functions of two types of compressional waves to the Green's function, the squirt-flow length has a small effect, and the effects of viscoelastic parameter are mainly in the higher frequency range. Crown Copyright (C) 2006 Published by Elsevier Ltd. All rights reserved.