1000 resultados para Small
Resumo:
To optimise the placement of small wind turbines in urban areas a detailed understanding of the spatial variability of the wind resource is required. At present, due to a lack of observations, the NOABL wind speed database is frequently used to estimate the wind resource at a potential site. However, recent work has shown that this tends to overestimate the wind speed in urban areas. This paper suggests a method for adjusting the predictions of the NOABL in urban areas by considering the impact of the underlying surface on a neighbourhood scale. In which, the nature of the surface is characterised on a 1 km2 resolution using an urban morphology database. The model was then used to estimate the variability of the annual mean wind speed across Greater London at a height typical of current small wind turbine installations. Initial validation of the results suggests that the predicted wind speeds are considerably more accurate than the NOABL values. The derived wind map therefore currently provides the best opportunity to identify the neighbourhoods in Greater London at which small wind turbines yield their highest energy production. The model does not consider street scale processes, however previously derived scaling factors can be applied to relate the neighbourhood wind speed to a value at a specific rooftop site. The results showed that the wind speed predicted across London is relatively low, exceeding 4 ms-1 at only 27% of the neighbourhoods in the city. Of these sites less than 10% are within 10 km of the city centre, with the majority over 20 km from the city centre. Consequently, it is predicted that small wind turbines tend to perform better towards the outskirts of the city, therefore for cities which fit the Burgess concentric ring model, such as Greater London, ‘distance from city centre’ is a useful parameter for siting small wind turbines. However, there are a number of neighbourhoods close to the city centre at which the wind speed is relatively high and these sites can only been identified with a detailed representation of the urban surface, such as that developed in this study.
Resumo:
Lipid cubic phases are complex nanostructures that form naturally in a variety of biological systems, with applications including drug delivery and nanotemplating. Most X-ray scattering studies on lipid cubic phases have used unoriented polydomain samples as either bulk gels or suspensions of micrometer-sized cubosomes. We present a method of investigating cubic phases in a new form, as supported thin films that can be analyzed using grazing incidence small-angle X-ray scattering (GISAXS). We present GISAXS data on three lipid systems: phytantriol and two grades of monoolein (research and industrial). The use of thin films brings a number of advantages. First, the samples exhibit a high degree of uniaxial orientation about the substrate normal. Second, the new morphology allows precise control of the substrate mesophase geometry and lattice parameter using a controlled temperature and humidity environment, and we demonstrate the controllable formation of oriented diamond and gyroid inverse bicontinuous cubic along with lamellar phases. Finally, the thin film morphology allows the induction of reversible phase transitions between these mesophase structures by changes in humidity on subminute time scales, and we present timeresolved GISAXS data monitoring these transformations.
Resumo:
Epidemiological and clinical trials reveal compelling evidence for the ability of dietary flavonoids to lower cardiovascular disease risk. The mechanisms of action of these polyphenolic compounds are diverse, and of particular interest is their ability to function as protein and lipid kinase inhibitors. We have previously described structure-activity studies that reinforce the possibility for using flavonoid structures as templates for drug design. In the present study, we aim to begin constructing rational screening strategies for exploiting these compounds as templates for the design of clinically relevant, antiplatelet agents. We used the platelet as a model system to dissect the structural influence of flavonoids, stilbenes, anthocyanidins, and phenolic acids on inhibition of cell signaling and function. Functional groups identified as relevant for potent inhibition of platelet function included at least 2 benzene rings, a hydroxylated B ring, a planar C ring, a C ring ketone group, and a C-2 positioned B ring. Hydroxylation of the B ring with either a catechol group or a single C-4' hydroxyl may be required for efficient inhibition of collagen-stimulated tyrosine phosphorylated proteins of 125 to 130 kDa, but may not be necessary for that of phosphotyrosine proteins at approximately 29 kDa. The removal of the C ring C-3 hydroxyl together with a hydroxylated B ring (apigenin) may confer selectivity for 37 to 38 kDa phosphotyrosine proteins. We conclude that this study may form the basis for construction of maps of flavonoid inhibitory activity on kinase targets that may allow a multitargeted therapeutic approach with analogue counterparts and parent compounds.
Resumo:
A series of 3-oxo-C12-HSL, tetramic acid and tetronic acid analogues was synthesized to gain insights into the structural requirements for quorum sensing inhibition in Staphylococcus aureus. Compounds active against agr were non-competitive inhibitors of the auto-inducing peptide (AIP)-activated AgrC receptor, by altering the activation efficacy of the cognate AIP-1. They appeared to act as negative allosteric modulators and are exemplified by 3-tetradecanoyltetronic acid 17 which reduced nasal cell colonization and arthritis in a murine infection model.
Resumo:
This letter has tested the canopy height profile (CHP) methodology as a way of effective leaf area index (LAIe) and vertical vegetation profile retrieval at a single-tree level. Waveform and discrete airborne LiDAR data from six swaths, as well as from the combined data of six swaths, were used to extract the LAIe of a single live Callitris glaucophylla tree. LAIe was extracted from raw waveform as an intermediate step in the CHP methodology, with two different vegetation-ground reflectance ratios. Discrete point LAIe estimates were derived from the gap probability using the following: 1) single ground returns and 2) all ground returns. LiDAR LAIe retrievals were subsequently compared to hemispherical photography estimates, yielding mean values within ±7% of the latter, depending on the method used. The CHP of a single dead Callitris glaucophylla tree, representing the distribution of vegetation material, was verified with a field profile manually reconstructed from convergent photographs taken with a fixed-focal-length camera. A binwise comparison of the two profiles showed very high correlation between the data reaching R2 of 0.86 for the CHP from combined swaths. Using a study-area-adjusted reflectance ratio improved the correlation between the profiles, but only marginally in comparison to using an arbitrary ratio of 0.5 for the laser wavelength of 1550 nm.
Resumo:
Owing to continuous advances in the computational power of handheld devices like smartphones and tablet computers, it has become possible to perform Big Data operations including modern data mining processes onboard these small devices. A decade of research has proved the feasibility of what has been termed as Mobile Data Mining, with a focus on one mobile device running data mining processes. However, it is not before 2010 until the authors of this book initiated the Pocket Data Mining (PDM) project exploiting the seamless communication among handheld devices performing data analysis tasks that were infeasible until recently. PDM is the process of collaboratively extracting knowledge from distributed data streams in a mobile computing environment. This book provides the reader with an in-depth treatment on this emerging area of research. Details of techniques used and thorough experimental studies are given. More importantly and exclusive to this book, the authors provide detailed practical guide on the deployment of PDM in the mobile environment. An important extension to the basic implementation of PDM dealing with concept drift is also reported. In the era of Big Data, potential applications of paramount importance offered by PDM in a variety of domains including security, business and telemedicine are discussed.
Resumo:
This paper presents an in-depth critical discussion and derivation of a detailed small-signal analysis of the Phase-Shifted Full-Bridge (PSFB) converter. Circuit parasitics, resonant inductance and transformer turns ratio have all been taken into account in the evaluation of this topology’s open-loop control-to-output, line-to-output and load-to-output transfer functions. Accordingly, the significant impact of losses and resonant inductance on the converter’s transfer functions is highlighted. The enhanced dynamic model proposed in this paper enables the correct design of the converter compensator, including the effect of parasitics on the dynamic behavior of the PSFB converter. Detailed experimental results for a real-life 36V-to-14V/10A PSFB industrial application show excellent agreement with the predictions from the model proposed herein.1
Resumo:
While the role of leadership in improving schools is attracting more worldwide attention, there is a need for more research investigating leaders’ experiences in different national contexts. Using focus-group and semi-structured interview data, this paper explores the background, identities and experiences of a small group of Jamaican school leaders who were involved in a leadership development programme. By drawing on the concepts of culture, socialisation and identity, the paper examines how the participants’ journeys of becoming and being school leaders are influenced by national-level societal and cultural issues, experienced at a local level. The findings suggest that in becoming school leaders, the participants perceived that they had a strong sense of agency in attempting to change the social structures within the institutions they lead and in the surrounding local communities, which in turn, they hope, will have a lasting effect on the nation as a whole.
Resumo:
This article reflects on a decade of British counterinsurgency operations. Questioning the idea that lessons have been learnt, the paper challenges the assumptions that are being used to frame future strategic choice. Suggesting that defence engagement is primarily focused on optimising overseas interventions while avoiding a deeper strategic reassessment about whether the UK should be undertaking these sorts of activities, the article calls for a proper debate on Britain's national security interests.
Resumo:
Artisanal and small-scale mining (ASM) is an activity intimately associated with social deprivation and environmental degradation, including deforestation. This paper examines ASM and deforestation using a broadly poststructural political ecology framework. Hegemonic discourses are shown to consistently influence policy direction, particularly in emerging approaches such as Corporate Social Responsibility and the Forest Stewardship Council. A review of alternative discourses reveals that the poststructural method is useful for critiquing the international policy arena but does not inform new approaches. Synthesis of the analysis leads to conclusions that echo a growing body of literature advocating for policies to become increasingly sensitive to local contexts, synergistic between actors at difference scales, and to be integrated across sectors.
Resumo:
The techno-economic performance of a small wind turbine is very sensitive to the available wind resource. However, due to financial and practical constraints installers rely on low resolution wind speed databases to assess a potential site. This study investigates whether the two site assessment tools currently used in the UK, NOABL or the Energy Saving Trust wind speed estimator, are accurate enough to estimate the techno-economic performance of a small wind turbine. Both the tools tend to overestimate the wind speed, with a mean error of 23% and 18% for the NOABL and Energy Saving Trust tool respectively. A techno-economic assessment of 33 small wind turbines at each site has shown that these errors can have a significant impact on the estimated load factor of an installation. Consequently, site/turbine combinations which are not economically viable can be predicted to be viable. Furthermore, both models tend to underestimate the wind resource at relatively high wind speed sites, this can lead to missed opportunities as economically viable turbine/site combinations are predicted to be non-viable. These results show that a better understanding of the local wind resource is a required to make small wind turbines a viable technology in the UK.
Resumo:
Considerable specification choice confronts countable adoption investigations and there is need to measure, formally, the evidence in favor of competing formulations. This article presents alternative countable adoption specifications—hitherto neglected in the agricultural-economics literature—and assesses formally their usefulness to practitioners. Reference to the left side of de Finetti's (1937) famous representation theorem motivates Bayesian unification of agricultural adoption studies and facilitates comparisons with conventional binary-choice specifications. Such comparisons have not previously been considered. The various formulations and the specific techniques are highlighted in an application to crossbred cow adoption in Sri Lanka's small-holder dairy sector.
Resumo:
A Canopy Height Profile (CHP) procedure presented in Harding et al. (2001) for large footprint LiDAR data was tested in a closed canopy environment as a way of extracting vertical foliage profiles from LiDAR raw-waveform. In this study, an adaptation of this method to small-footprint data has been shown, tested and validated in an Australian sparse canopy forest at plot- and site-level. Further, the methodology itself has been enhanced by implementing a dataset-adjusted reflectance ratio calculation according to Armston et al. (2013) in the processing chain, and tested against a fixed ratio of 0.5 estimated for the laser wavelength of 1550nm. As a by-product of the methodology, effective leaf area index (LAIe) estimates were derived and compared to hemispherical photography-derived values. To assess the influence of LiDAR aggregation area size on the estimates in a sparse canopy environment, LiDAR CHPs and LAIes were generated by aggregating waveforms to plot- and site-level footprints (plot/site-aggregated) as well as in 5m grids (grid-processed). LiDAR profiles were then compared to leaf biomass field profiles generated based on field tree measurements. The correlation between field and LiDAR profiles was very high, with a mean R2 of 0.75 at plot-level and 0.86 at site-level for 55 plots and the corresponding 11 sites. Gridding had almost no impact on the correlation between LiDAR and field profiles (only marginally improvement), nor did the dataset-adjusted reflectance ratio. However, gridding and the dataset-adjusted reflectance ratio were found to improve the correlation between raw-waveform LiDAR and hemispherical photography LAIe estimates, yielding the highest correlations of 0.61 at plot-level and of 0.83 at site-level. This proved the validity of the approach and superiority of dataset-adjusted reflectance ratio of Armston et al. (2013) over a fixed ratio of 0.5 for LAIe estimation, as well as showed the adequacy of small-footprint LiDAR data for LAIe estimation in discontinuous canopy forests.