968 resultados para Slope land
Resumo:
Global change drivers are known to interact in their effects on biodiversity, but much research to date ignores this complexity. As a consequence, there are problems in the attribution of biodiversity change to different drivers and, therefore, our ability to manage habitats and landscapes appropriately. Few studies explicitly acknowledge and account for interactive (i.e., nonadditive) effects of land use and climate change on biodiversity. One reason is that the mechanisms by which drivers interact are poorly understood. We evaluate such mechanisms, including interactions between demographic parameters, evolutionary trade-offs and synergies and threshold effects of population size and patch occupancy on population persistence. Other reasons for the lack of appropriate research are limited data availability and analytical issues in addressing interaction effects. We highlight the influence that attribution errors can have on biodiversity projections and discuss experimental designs and analytical tools suited to this challenge. Finally, we summarize the risks and opportunities provided by the existence of interaction effects. Risks include ineffective conservation management; but opportunities also arise, whereby the negative impacts of climate change on biodiversity can be reduced through appropriate land management as an adaptation measure. We hope that increasing the understanding of key mechanisms underlying interaction effects and discussing appropriate experimental and analytical designs for attribution will help researchers, policy makers, and conservation practitioners to better minimize risks and exploit opportunities provided by land use-climate change interactions.
Resumo:
We present a palaeoecological investigation of pre-Columbian land use in the savannah “forest island” landscape of north-east Bolivian Amazonia. A 5700 year sediment core from La Luna Lake, located adjacent to the La Luna forest island site, was analysed for fossil pollen and charcoal. We aimed to determine the palaeoenvironmental context of pre-Columbian occupation on the site and assess the environmental impact of land use in the forest island region. Evidence for anthropogenic burning and Zea mays L. cultivation began ~2000 cal a BP, at a time when the island was covered by savannah, under drier-than-present climatic conditions. After ~1240 cal a BP burning declined and afforestation occurred. We show that construction of the ring ditch, which encircles the island, did not involve substantial deforestation. Previous estimates of pre-Columbian population size in this region, based upon labour required for forest clearance, should therefore be reconsidered. Despite the high density of economically useful plants, such as Theobroma cacao, in the modern forest, no direct pollen evidence for agroforestry was found. However, human occupation is shown to pre-date and span forest expansion on this site, suggesting that here, and in the wider forest island region, there is no truly pre-anthropogenic ‘pristine’ forest.
Resumo:
1. Bees are a functionally important and economically valuable group, but are threatened byland-use conversion and intensification. Such pressures are not expected to affect all species identically; rather, they are likely to be mediated by the species’ ecological traits. 2. Understanding which types of species are most vulnerable under which land uses is an important step towards effective conservation planning.3. We collated occurrence and abundance data for 257 bee species at 1584 European sites from surveys reported in 30 published papers (70 056 records) and combined them with species-level ecological trait data. We used mixed-effects models to assess the importance of land use (land-use class, agricultural use-intensity and a remotely-sensed measure of vegetation),traits and trait 9 land-use interactions, in explaining species occurrence and abundance.4. Species’ sensitivity to land use was most strongly influenced by flight season duration and foraging range, but also by niche breadth, reproductive strategy and phenology, with effects that differed among cropland, pastoral and urban habitats.5. Synthesis and applications. Rather than targeting particular species or settings, conservation action s may be more effective if focused on mitigating situations where species’ traits strongly and negatively interact with land-use pressures. We find evidence that low-intensity agriculture can maintain relatively diverse bee communities; in more intensive settings, added floral resources may be beneficial, but will require careful placement with respect to foraging ranges of smaller bee species. Protection of semi-natural habitats is essential, however; in particular, conversion to urban environments could have severe effects on bee diversity and pollination services. Our results highlight the importance of exploring how ecological traits mediate species responses to human impacts, but further research is needed to enhance the predictive ability of such analyses.
Resumo:
Human population growth and resource use, mediated by changes in climate, land use, and water use, increasingly impact biodiversity and ecosystem services provision. However, impacts of these drivers on biodiversity and ecosystem services are rarely analyzed simultaneously and remain largely unknown. An emerging question is how science can improve the understanding of change in biodiversity and ecosystem service delivery and of potential feedback mechanisms of adaptive governance. We analyzed past and future change in drivers in south-central Sweden. We used the analysis to identify main research challenges and outline important research tasks. Since the 19th century, our study area has experienced substantial and interlinked changes; a 1.6°C temperature increase, rapid population growth, urbanization, and massive changes in land use and water use. Considerable future changes are also projected until the mid-21st century. However, little is known about the impacts on biodiversity and ecosystem services so far, and this in turn hampers future projections of such effects. Therefore, we urge scientists to explore interdisciplinary approaches designed to investigate change in multiple drivers, underlying mechanisms, and interactions over time, including assessment and analysis of matching-scale data from several disciplines. Such a perspective is needed for science to contribute to adaptive governance by constantly improving the understanding of linked change complexities and their impacts.
Resumo:
Land cover data derived from satellites are commonly used to prescribe inputs to models of the land surface. Since such data inevitably contains errors, quantifying how uncertainties in the data affect a model’s output is important. To do so, a spatial distribution of possible land cover values is required to propagate through the model’s simulation. However, at large scales, such as those required for climate models, such spatial modelling can be difficult. Also, computer models often require land cover proportions at sites larger than the original map scale as inputs, and it is the uncertainty in these proportions that this article discusses. This paper describes a Monte Carlo sampling scheme that generates realisations of land cover proportions from the posterior distribution as implied by a Bayesian analysis that combines spatial information in the land cover map and its associated confusion matrix. The technique is computationally simple and has been applied previously to the Land Cover Map 2000 for the region of England and Wales. This article demonstrates the ability of the technique to scale up to large (global) satellite derived land cover maps and reports its application to the GlobCover 2009 data product. The results show that, in general, the GlobCover data possesses only small biases, with the largest belonging to non–vegetated surfaces. In vegetated surfaces, the most prominent area of uncertainty is Southern Africa, which represents a complex heterogeneous landscape. It is also clear from this study that greater resources need to be devoted to the construction of comprehensive confusion matrices.
Resumo:
The first agricultural societies were established around 10 ka BP and had spread across much of Europe and southern Asia by 5.5 ka BP with resultant anthropogenic deforestation for crop and pasture land. Various studies (e.g. Joos et al., 2004; Kaplan et al., 2011; Mitchell et al., 2013) have attempted to assess the biogeochemical implications for Holocene climate in terms of increased carbon dioxide and methane emissions. However, less work has been done to examine the biogeophysical impacts of this early land use change. In this study, global climate model simulations with Hadley Centre Coupled Model version 3 (HadCM3) were used to examine the biogeophysical effects of Holocene land cover change on climate, both globally and regionally, from the early Holocene (8 ka BP) to the early industrial era (1850 CE). Two experiments were performed with alternative descriptions of past vegetation: (i) one in which potential natural vegetation was simulated by Top-down Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID) but without land use changes and (ii) one where the anthropogenic land use model Kaplan and Krumhardt 2010 (KK10; Kaplan et al., 2009, 2011) was used to set the HadCM3 crop regions. Snapshot simulations were run at 1000-year intervals to examine when the first signature of anthropogenic climate change can be detected both regionally, in the areas of land use change, and globally. Results from our model simulations indicate that in regions of early land disturbance such as Europe and south-east Asia detectable temperature changes, outside the normal range of variability, are encountered in the model as early as 7 ka BP in the June–July–August (JJA) season and throughout the entire annual cycle by 2–3 ka BP. Areas outside the regions of land disturbance are also affected, with virtually the whole globe experiencing significant temperature changes (predominantly cooling) by the early industrial period. The global annual mean temperature anomalies found in our single model simulations were −0.22 at 1850 CE, −0.11 at 2 ka BP, and −0.03 °C at 7 ka BP. Regionally, the largest temperature changes were in Europe with anomalies of −0.83 at 1850 CE, −0.58 at 2 ka BP, and −0.24 °C at 7 ka BP. Large-scale precipitation features such as the Indian monsoon, the Intertropical Convergence Zone (ITCZ), and the North Atlantic storm track are also impacted by local land use and remote teleconnections. We investigated how advection by surface winds, mean sea level pressure (MSLP) anomalies, and tropospheric stationary wave train disturbances in the mid- to high latitudes led to remote teleconnections.
Resumo:
Cloud streets are common feature in the Amazon Basin. They form from the combination of the vertical trade wind stress and moist convection. Here, satellite imagery, data collected during the COBRA-PARA (Caxiuan Observations in the Biosphere, River and Atmosphere of Para) field campaign, and high resolution modeling are used to understand the streets` formation and behavior. The observations show that the streets have an aspect ratio of about 3.5 and they reach their maximum activity around 15:00 UTC when the wind shear is weaker, and the convective boundary layer reaches its maximum height. The simulations reveal that the cloud streets onset is caused by the local circulations and convection produced at the interfaces between forest and rivers of the Amazon. The satellite data and modeling show that the large rivers anchor the cloud streets producing a quasi-stationary horizontal pattern. The streets are associated with horizontal roll vortices parallel to the mean flow that organizes the turbulence causing advection of latent heat flux towards the upward branches. The streets have multiple warm plumes that promote a connection between the rolls. These spatial patterns allow fundamental insights on the interpretation of the Amazon exchanges between surface and atmosphere with important consequences for the climate change understanding.
Resumo:
Tropical vegetation is a major source of global land surface evapotranspiration, and can thus play a major role in global hydrological cycles and global atmospheric circulation. Accurate prediction of tropical evapotranspiration is critical to our understanding of these processes under changing climate. We examined the controls on evapotranspiration in tropical vegetation at 21 pan-tropical eddy covariance sites, conducted a comprehensive and systematic evaluation of 13 evapotranspiration models at these sites, and assessed the ability to scale up model estimates of evapotranspiration for the test region of Amazonia. Net radiation was the strongest determinant of evapotranspiration (mean evaporative fraction was 0.72) and explained 87% of the variance in monthly evapotranspiration across the sites. Vapor pressure deficit was the strongest residual predictor (14%), followed by normalized difference vegetation index (9%), precipitation (6%) and wind speed (4%). The radiation-based evapotranspiration models performed best overall for three reasons: (1) the vegetation was largely decoupled from atmospheric turbulent transfer (calculated from X decoupling factor), especially at the wetter sites; (2) the resistance-based models were hindered by difficulty in consistently characterizing canopy (and stomatal) resistance in the highly diverse vegetation; (3) the temperature-based models inadequately captured the variability in tropical evapotranspiration. We evaluated the potential to predict regional evapotranspiration for one test region: Amazonia. We estimated an Amazonia-wide evapotranspiration of 1370 mm yr(-1), but this value is dependent on assumptions about energy balance closure for the tropical eddy covariance sites; a lower value (1096 mm yr(-1)) is considered in discussion on the use of flux data to validate and interpolate models.
Resumo:
This work is an assessment of frequency of extreme values (EVs) of daily rainfall in the city of Sao Paulo. Brazil, over the period 1933-2005, based on the peaks-over-threshold (POT) and Generalized Pareto Distribution (GPD) approach. Usually. a GPD model is fitted to a sample of POT Values Selected With a constant threshold. However. in this work we use time-dependent thresholds, composed of relatively large p quantities (for example p of 0.97) of daily rainfall amounts computed from all available data. Samples of POT values were extracted with several Values of p. Four different GPD models (GPD-1, GPD-2, GPD-3. and GDP-4) were fitted to each one of these samples by the maximum likelihood (ML) method. The shape parameter was assumed constant for the four models, but time-varying covariates were incorporated into scale parameter of GPD-2. GPD-3, and GPD-4, describing annual cycle in GPD-2. linear trend in GPD-3, and both annual cycle and linear trend in GPD-4. The GPD-1 with constant scale and shape parameters is the simplest model. For identification of the best model among the four models WC used rescaled Akaike Information Criterion (AIC) with second-order bias correction. This criterion isolates GPD-3 as the best model, i.e. the one with positive linear trend in the scale parameter. The slope of this trend is significant compared to the null hypothesis of no trend, for about 98% confidence level. The non-parametric Mann-Kendall test also showed presence of positive trend in the annual frequency of excess over high thresholds. with p-value being virtually zero. Therefore. there is strong evidence that high quantiles of daily rainfall in the city of Sao Paulo have been increasing in magnitude and frequency over time. For example. 0.99 quantiles of daily rainfall amount have increased by about 40 mm between 1933 and 2005. Copyright (C) 2008 Royal Meteorological Society
Resumo:
This paper presents a GIS-based multicriteria flood risk assessment and mapping approach applied to coastal drainage basins where hydrological data are not available. It involves risk to different types of possible processes: coastal inundation (storm surge), river, estuarine and flash flood, either at urban or natural areas, and fords. Based on the causes of these processes, several environmental indicators were taken to build-up the risk assessment. Geoindicators include geological-geomorphologic proprieties of Quaternary sedimentary units, water table, drainage basin morphometry, coastal dynamics, beach morphodynamics and microclimatic characteristics. Bioindicators involve coastal plain and low slope native vegetation categories and two alteration states. Anthropogenic indicators encompass land use categories properties such as: type, occupation density, urban structure type and occupation consolidation degree. The selected indicators were stored within an expert Geoenvironmental Information System developed for the State of Sao Paulo Coastal Zone (SIIGAL), which attributes were mathematically classified through deterministic approaches, in order to estimate natural susceptibilities (Sn), human-induced susceptibilities (Sa), return period of rain events (Ri), potential damages (Dp) and the risk classification (R), according to the equation R=(Sn.Sa.Ri).Dp. Thematic maps were automatically processed within the SIIGAL, in which automata cells (""geoenvironmental management units"") aggregating geological-geomorphologic and land use/native vegetation categories were the units of classification. The method has been applied to the Northern Littoral of the State of Sao Paulo (Brazil) in 32 small drainage basins, demonstrating to be very useful for coastal zone public politics, civil defense programs and flood management.
Resumo:
Roads facilitate access by deforestation agents, being relevant in studies approaching conservationist matters in rainforests. It is important to understand the relationship between road distribution, relief, land use, and forest coverage in order to evaluate where forests are more vulnerable. This study aimed at: 1) understanding the relationship between relief and density and road connectivity in three moments in time; and 2) evaluating the relationship between distance from roads and forest coverage, farmlands and rural and urban facilities in a fragmented Atlantic Forest landscape in three moments in time. Maps of roads, altitude, and land use and coverage were used. Chi-square tests showed that: 1) density and road connectivity did not present significant relationship with the relief; and 2) forest areas occupy areas distant from the roads, while farmlands and rural and urban facilities occupy areas nearer the roads. Roads and land use, regardless of relief, influence forest coverage distribution. Thus, we suggest that roads are taken into account in conservationist strategies and environmental planning.
Resumo:
(Relief influence on tree species richness in secondary forest fragments of Atlantic Forest, SE, Brazil). The aim of this work was to explore the relationship between tree species richness and morphological characteristics of relief at the Ibiuna Plateau (SE Brazil). We sampled 61 plots of 0.30 ha, systematically established in 20 fragments of secondary forest (2-274 ha) and in three areas within a continuous secondary forest site, Morro Grande Reserve (9,400 ha). At each plot, 100 trees with diameter at breast height > 5 cm were sampled by the point centered quarter method, and total richness and richness per dispersal and succession class were obtained. The relief was characterized by the mean and variance of slope, elevation, aspect and slope location. There was no significant relationship between relief heterogeneity and tree species richness. Relief parameters generally did not affect tree richness, but elevation was particularly important especially in the continuous forest. Despite the limited range of altitudinal variation (150 m), species richness increases with elevation. The highest areas were also those with the largest forest cover and the lowest disturbance degree, which should contribute to the greater richness of those sites. Our results suggest an indirect influence of relief, due to the fact that deforestation is less intense in higher regions, rather than a direct influence of abiotic factors related to the altitudinal gradient.
Resumo:
The present paper reports on 22 species collected by the Brazilian Program of Living Resources in the Exclusive Economic Zone (REVIZEE). A new genus and species of Cribrilinidae, Corbuliporina crepida n. gen. et sp., is described, along with seventeen other new species: Chaperia brasiliensis n. sp., Amastigia aviculifera n. sp., Isosecuriflustra pinniformis n. sp., Cellaria subtropicalis n. sp., Melicerita brasiliensis n. sp., Arachnopusia haywardi n. sp., Smittina migottoi n. sp., Hippomenella amaralae n. sp., Rogicka joannae n. sp., Malakosaria atlantica n. sp., Turbicellepora winstonae n. sp., Rhynchozoon coalitum n. sp., Stephanollona angusta n. sp., Stephanollona arborescens n. sp., Aulopocella americana n. sp., Conescharellina cookae n. sp. and Conescharellina bocki n. sp. Chorizopora brongniartii (Audouin, 1826) is recorded for the first time in Brazilian waters and a new combination for Rhynchozoon arborescens Canu & Bassler, 1928 is established. New illustrations and taxonomic remarks are included for two little-known species from Brazil, Rogicka scopae (Canu & Bassler, 1928) and Fenestrulina ampla Canu & Bassler, 1928. A compilation of species recorded from deeper waters of the Brazilian coast is included.
Resumo:
J.A. Ferreira Neto, E.C. Santos Junior, U. Fra Paleo, D. Miranda Barros, and M.C.O. Moreira. 2011. Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms. Cien. Inv. Agr. 38(2): 169-178. The objective of this manuscript is to develop a new procedure to achieve optimal land subdivision using genetic algorithms (GA). The genetic algorithm was tested in the rural settlement of Veredas, located in Minas Gerais, Brazil. This implementation was based on the land aptitude and its productivity index. The sequence of tests in the study was carried out in two areas with eight different agricultural aptitude classes, including one area of 391.88 ha subdivided into 12 lots and another of 404.1763 ha subdivided into 14 lots. The effectiveness of the method was measured using the shunting line standard value of a parceled area lot`s productivity index. To evaluate each parameter, a sequence of 15 calculations was performed to record the best individual fitness average (MMI) found for each parameter variation. The best parameter combination found in testing and used to generate the new parceling with the GA was the following: 320 as the generation number, a population of 40 individuals, 0.8 mutation tax, and a 0.3 renewal tax. The solution generated rather homogeneous lots in terms of productive capacity.
Resumo:
[1] The retrieval of aerosol optical depth (Ta) over land by satellite remote sensing is still a challenge when a high spatial resolution is required. This study presents a tool that uses satellite measurements to dynamically identify the aerosol optical model that best represents the optical properties of the aerosol present in the atmosphere. We use aerosol critical reflectance to identify the single scattering albedo of the aerosol layer. Two case studies show that the Sao Paulo region can have different aerosol properties and demonstrates how the dynamic methodology works to identify those differences to obtain a better T a retrieval. The methodology assigned the high single scattering albedo aerosol model (pi o( lambda = 0.55) = 0.90) to the case where the aerosol source was dominated by biomass burning and the lower pi(o) model (pi(o) (lambda = 0.55) = 0.85) to the case where the local urban aerosol had the dominant influence on the region, as expected. The dynamic methodology was applied using cloud-free data from 2002 to 2005 in order to retrieve Ta with Moderate Resolution Imaging Spectroradiometer ( MODIS). These results were compared with collocated data measured by AERONET in Sao Paulo. The comparison shows better results when the dynamic methodology using two aerosol optical models is applied (slope 1.06 +/- 0.08 offset 0.01 +/- 0.02 r(2) 0.6) than when a single and fixed aerosol model is used (slope 1.48 +/- 0.11 and offset - 0.03 +/- 0.03 r(2) 0.6). In conclusion the dynamical methodology is shown to work well with two aerosol models. Further studies are necessary to evaluate the methodology in other regions and under different conditions.