990 resultados para Simple Group
Resumo:
Conflict between males and females over whether, when, and how often to mate often leads to the evolution of sexually antagonistic interactions that reduce female reproductive success. Because the offspring of relatives contribute to inclusive fitness, high relatedness between rival males might be expected to reduce competition and result in the evolution of reduced harm to females. A recent study investigated this possibility in Drosophila melanogaster and concluded that groups of brothers cause less harm to females than groups of unrelated males, attributing the effect to kin selection. That study did not control for the rearing environment of males, rendering the results impossible to interpret in the context of kin selection. Here, we conducted a similar experiment while manipulating whether males developed with kin prior to being placed with females. We found no difference between related and unrelated males in the harm caused to females when males were reared separately. In contrast, when related males developed and emerged together before the experiment, female reproductive output was higher. Our results show that relatedness among males is insufficient to reduce harm to females, while a shared rearing environment - resulting in males similar to or familiar with one another - is necessary to generate this pattern.
Resumo:
Parasites can cause extensive damage to animal societies in which many related individuals frequently interact. In response, social animals have evolved diverse individual and collective defences. Here, we measured the expression and efficiency of self-grooming and allo-grooming when workers of the ant Formica selysi were contaminated with spores of the fungal entomopathogen Metarhizium anisopliae. The amount of self-grooming increased in the presence of fungal spores, which shows that the ants are able to detect the risk of infection. In contrast, the amount of allo-grooming did not depend on fungal contamination. Workers groomed all nestmate workers that were re-introduced into their groups. The amount of allo-grooming towards noncontaminated individuals was higher when the group had been previously exposed to the pathogen. Allo-grooming decreased the number of fungal spores on the surface of contaminated workers, but did not prevent infection in the conditions tested (high dose of spores and late allo-grooming). The rate of disease transmission to groomers and other nestmates was extremely low. The systematic allo-grooming of all individuals returning to the colony, be they contaminated or not, is probably a simple but robust prophylactic defence preventing the spread of fungal diseases in insect societies.
Resumo:
The article examines the structure of the collaboration networks of research groups where Slovenian and Spanish PhD students are pursuing their doctorate. The units of analysis are student-supervisor dyads. We use duocentred networks, a novel network structure appropriate for networks which are centred around a dyad. A cluster analysis reveals three typical clusters of research groups. Those which are large and belong to several institutions are labelled under a bridging social capital label. Those which are small, centred in a single institution but have high cohesion are labelled as bonding social capital. Those which are small and with low cohesion are called weak social capital groups. Academic performance of both PhD students and supervisors are highest in bridging groups and lowest in weak groups. Other variables are also found to differ according to the type of research group. At the end, some recommendations regarding academic and research policy are drawn
Resumo:
Audit report on Highway Safety Projects administered by The Integer Group Midwest for the year ended September 30, 2006
Resumo:
A reanalysis, based on museum specimens, of our previously published data on the geographical distribution of the species of Drosophila belonging to the cardini group in Brazil is presented and discussed. As previously recorded in several papers, including ours, the following four species were recognized: D. cardini, D. cardinoides, D. neocardini, and D. polymorpha. However, it was realized that most of the flies we have previously identified as Drosophila cardinoides belong in fact to Drosophila cardini. To facilitate the proper identification of these four near-sibling species, their holotypes were analyzed and their terminalia were described and illustrated. A key to the four species is also provided.
Resumo:
Traditionally, the Drosophila guarani species group has been divided into two subgroups: the guarani and the guaramunu subgroups. Two, out of the four species included in this research, are members of the guarani subgroup (D. ornatifrons Duda, 1927 and D. subbadia Paterson & Mainland, 1943) and two are included in the guaramunu subgroup (D. maculifrons Duda, 1927 and D. griseolineata Duda, 1927). However, some authors have suggested that D. maculifrons and D. griseolineata are much closer to some species of the Drosophila tripunctata group than to some of the species of the guarani group. To add new data to the matter under dispute, Polyacrylamide Gel Eletrophoresis (PAGE-SDS) was used for the analysis and comparison of protein composition and Random Amplified Polymorphic DNA (RAPD) analysis to find differences in genomic DNA, in addition to the analysis of quantitative morphological characters previously described. Analysis of PAGE-SDS results in a dendrogram that pointed out D. subbadia as being the most distant within the Drosophila guarani group. However, these results were not supported either by RAPD analysis or by the analysis of continuous morphological characters, which supplied the clustering of D. subbadia with D. ornatifrons. Although our data give strong support to the clustering of D. subbadia and D. ornatifrons, none of the dendrograms provided a clade comprising D. maculifrons and D. griseolineata. Thus, this research does not support the traditional subdivision of the D. guarani group into those two subgroups.
Resumo:
PURPOSE: Diabetic retinopathy (DR) is a leading cause of blindness, yet pertinent animal models are uncommon. The sand rat (Psammomys obesus), exhibiting diet-induced metabolic syndrome, might constitute a relevant model. METHODS: Adult P. obesus (n = 39) were maintained in captivity for 4 to 7 months and fed either vegetation-based diets (n = 13) or standard rat chow (n = 26). Although plant-fed animals exhibited uniform body weight and blood glucose levels over time, nearly 60% of rat chow-raised animals developed diabetes-like symptoms (test group). Animals were killed, and their eyes and vitreous were processed for immunochemistry. RESULTS: Compared with plant-fed animals, diabetic animals showed many abnormal vascular features, including vasodilation, tortuosity, and pericyte loss within the blood vessels, hyperproteinemia and elevated ratios of proangiogenic and antiangiogenic growth factors in the vitreous, and blood-retinal barrier breakdown. Furthermore, there were statistically significant decreases in retinal cell layer thicknesses and densities, accompanied by profound alterations in glia (downregulation of glutamine synthetase, glutamate-aspartate transporter, upregulation of glial fibrillar acidic protein) and many neurons (reduced expression of protein kinase Cα and Cξ in bipolar cells, axonal degeneration in ganglion cells). Cone photoreceptors were particularly affected, with reduced expression of short- and mid-/long-wavelength opsins. Hypercaloric diet nondiabetic animals showed intermediate values. CONCLUSIONS: Simple dietary modulation of P. obesus induces a rapid and severe phenotype closely resembling human type 2 DR. This species presents a valuable novel experimental model for probing the neural (especially cone photoreceptor) pathogenic modifications that are difficult to study in humans and for screening therapeutic strategies.
Resumo:
Hierarchical clustering is a popular method for finding structure in multivariate data,resulting in a binary tree constructed on the particular objects of the study, usually samplingunits. The user faces the decision where to cut the binary tree in order to determine the numberof clusters to interpret and there are various ad hoc rules for arriving at a decision. A simplepermutation test is presented that diagnoses whether non-random levels of clustering are presentin the set of objects and, if so, indicates the specific level at which the tree can be cut. The test isvalidated against random matrices to verify the type I error probability and a power study isperformed on data sets with known clusteredness to study the type II error.
Resumo:
Estimates/projections for age 60+ for the state and for its counties and incorporated places. DEA also provides population estimates on poverty, race and ethnicity, and urban and rural for age 60+. This statistical information is obtained from numerous resources, including the State Data Center of Iowa, US Census Bureau, the Administration on Aging, and Iowa State University Census Services. "The Census Bureau uses the latest available estimates as starting points for population projections. Sometimes the user may see both an estimate and a projection available for the same reference date, which may not agree because they were produced at different times. In such cases, estimates are the preferred data." (Source: State Data Center)
Resumo:
The Department of Elder Affairs maintains and provides population and demographic estimates/projections for age 60+ for the state and for its counties and incorporated places. DEA also provides population estimates on poverty, race and ethnicity, and urban and rural for age 60+. This statistical information is obtained from numerous resources, including the State Data Center of Iowa, US Census Bureau, the Administration on Aging, and Iowa State University Census Services. "The Census Bureau uses the latest available estimates as starting points for population projections. Sometimes the user may see both an estimate and a projection available for the same reference date, which may not agree because they were produced at different times. In such cases, estimates are the preferred data." (Source: State Data Center)
Resumo:
RESUME : De nombreuses espèces animales vivent en groupe. Du simple grégarisme aux colonies hautement intégrées de fourmis, la vie sociale a atteint des degrés divers de complexité. Les nombreuses interactions entre membres d'une société favorisent la transmission de parasites. Cela représente un coût potentiel de la vie sociale. Cette thèse s'intéresse aux défenses permettant de réduire le coût du parasitisme dans les colonies de fourmis ainsi qu'à la manière dont le parasitisme a pu façonner certains aspects de ces sociétés. Les colonies de fourmis des bois (Forimica paralugubris) contiennent de grandes quantités de résine de conifères. Cette résine réduit la densité microbienne dans le nid et augmente la survie des ouvrières lors d'infections parasitaires. Dans cette thèse, nous montrons, d'une part, que les ouvrières collectent activement la résine et que ce comportement est plutôt préventif que curatif et, d'autre part, que la résine permet aux ouvrières une utilisation moindre de leurs défenses immunitaires. Ces résultats permettent de conclure que ce comportement réduit l'exposition au parasitisme et qu'il a une fonction adaptative. L'émergence d'un tel comportement de médication chez une espèce d'insectes sociaux illustre le fait que la socialité, bien yue provoquant une exposition accrue au parasitisme, permet également l'émergence de mécanismes sociaux de défense. II a été suggéré que la présence de plusieurs reines au sein d'un même nid (polygynie) améliore la résistance aux parasites en augmentant la diversité génétique au sein de la colonie. En accord avec cette hypothèse, nous montrons qu'une augmentation de la diversité génétique au sein de groupes expérimentaux de Formica selysi améliore leur survie lors d'une infection parasitaire. Cependant, nous suggérons également que sur le terrain, d'autres facteurs corrélés à la polygynie ont des effets antagoniques sur la résistance. Nous montrons par exemple que les ouvrières polygynes semblent avoir une capacité moindre à monter une réponse immunitaire. Certains aspects de la reproduction des fourmis ont pu également être façonnés par le parasitisme. L'accouplement n'a lieu que lors d'une courte période au début de la vie adulte, généralement à l'extérieur de la colonie. Les reines stockent ensuite le sperme et l'utilisent parcimonieusement au cours de leur vie alors que les males meurent rapidement. Nous montrons que les défenses immunitaires des reines de fourmis des bois (F. paralugubris) sont fortement affectées par l'accouplement. Ces modulations immunitaires sont probablement liées à une augmentation de l'exposition au parasitisme lors de l'accouplement ainsi qu'à des blessures copulatoires. I1 semble donc que l'accouplement soit accompagné de coûts immunitaires pour les reines. Dans son ensemble, cette thèse illustre la diversité des mécanismes de défenses contre les parasites dans les sociétés de fourmis. La vie sociale, en offrant un nouveau niveau d'interaction, permet en effet l'émergence d'adaptations originales. Cela explique probablement le grand succès écologique des espèces sociales. SUMMARY : Sociality is widespread among animals and has reached variable degrees of complexity, from loose social Groups to highly integrated ant colonies. The many interactions between members of a social group promote the spread of parasites, but social life also permits the evolution of original defence mechanisms. This thesis sheds light on how ant colonies defend themselves against parasites, and on how parasitism shapes certain aspects of these societies. Wood ants nests (Formica paralugubris) contain large amounts of conifer resin which reduces the microbial density in ant nests and enhances the survival of ants challenged by some pathogens. We show that resin is actively collected by workers and that resin collection is rather a prophylactic than a curative behaviour. Moreover, we suggest that resin reduces the use of the immune defences of workers. Altogether, these results indicate that the use of resin is a collective adaptation to prevent the spread of parasites. The emergence of medication in a social insect species illustrates that sociality does not only increase the exposure to parasites but also allows the emergence of social mechanisms to counter this threat. The number of reproducing queens per colony is a variable trait in ants. It has been suggested that polygyny (the occurrence of multiple queens within a colony), by increasing the colonial genetic diversity, improves disease resistance. In line with this hypothesis, we show that in a socially polymorphic ant (Formica selysi), an experimental increase of colony genetic diversity enhances disease resistance. However, we also suggest that factors covarying with queen number variation in the field have antagonistic effects on parasite resistance. We show for instance that polygyne workers seem to have lower immune defences. Parasites may also shape some aspects of ant queen reproductive biology. Ant queens mate at the beginning of their adult life, usually outside of the colony, and store sperm for several years to fertilize eggs. Males die shortly after mating and queens never remate later in life, which drastically reduces sexual conflicts. Moreover, mating and nest founding occur away from the collective defence mechanisms of the natal colony and might be associated with an increased risk of parasitism. We show that mating affects the immune defences of wood ant queens (F. paralugubris) in multiple ways that are consistent with mating wounds and increased risk of parasitism. We suggest that mating is associated with immunity costs in ants, despite the reduced level of sexual conflicts. Altogether, my thesis illustrates the diversity of anti-parasite mechanisms in ant societies. This sheds light on how sociality, by offering a new level of interactions, allows the evolution of original adaptations, which may explain the wide ecological success of social species.