994 resultados para Seed addition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article presents a study which evaluates the impact of saltmarsh perturbation on seed quality of Sarcocornia which is a food for the endangered Orange-bellied parrot in Australia. It notes the significant impact of grazing on the energy and availability of Sarcocornia seeds in saltmarshes and indicates that graze-free saltmarshes with regular inundation provide the highest potential for Sarcocornia seed availability. Further, the substantial factor of soil characteristics and salinity of flood water and inundation on the seed production of Sarcocornia is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterotrimeric G proteinshave been previously linked to plant defense; however a role for the Gbg dimer in defense signaling has not been described to date. Using available Arabidopsis (Arabidopsis thaliana) mutants lacking functional Ga or Gb subunits, we show that defense against the necrotrophic pathogens Alternaria brassicicola and Fusarium oxysporum is impaired in Gb-deficient mutants while Ga-deficient mutants show slightly increased resistance compared to wild-type Columbia ecotype plants. In contrast, responses to virulent (DC3000) and avirulent (JL1065) strains of Pseudomonas syringae appear to be independent of heterotrimeric G proteins. The induction of a number of defense-related genes in Gb-deficient mutants were severely reduced in response to A. brassicicola infection. In addition, Gb-deficient mutants exhibit decreased sensitivity to a number of methyl jasmonate-induced responses such as induction of the plant defensin gene PDF1.2, inhibition of root elongation, seed germination, and growth of plants in sublethal concentrations of methyl jasmonate. In all cases, the behavior of the Ga-deficient mutants is coherent with the classic heterotrimeric mechanism of action, indicating that jasmonic acid signaling is influenced by the Gbg functional subunit but not by Ga. We hypothesize that Gbg acts as a direct or indirect enhancer of the jasmonate signaling pathway in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solvent and ion dynamics in PMMA based gels have been investigated as a function of the loading of nanosized TiO2 particles. The gels have a molar ratio of 46.5:19:4.5:30 of ethylene carbonate (EC), propylene carbonate (PC), lithium perchlorate and PMMA, respectively. A series of samples with 0, 4, 6 and 8 wt.% TiO2 filler were investigated. The diffusion coefficients for the lithium ions and for the two solvents (EC and PC) were investigated by pfg-NMR. It was shown that the addition of filler to the gel electrolytes enhances the diffusion of the cations, while the diffusion of the solvents remains constant. Raman measurements show no significant changes in ion–ion interactions with the addition of fillers, while the ionic conductivity is seen to decrease. However, the sample with 8 wt.% TiO2 had a conductivity close to that of the unfilled sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of nano-sized ceramic particles to the plastic crystal ethyl-methyl pyrrolidinium bis(trifluoromethane sulfonyl)amide (P12TFSA) has been investigated by means of DSC and conductivity. The thermal behaviour of the plastic crystal as a function of filler content suggests that the filler particles decrease the onset temperature of the melting slightly at high loadings, however they do not decrease the crystallinity of the material. Furthermore, the IV → III transition decreases in intensity, indicating that the addition of filler increases the possibility for the crystal to remain in metastable rotator phases also at lower temperatures. The conductivity shows a more than one order of magnitude increase with the addition of filler, with a filler concentration dependence that levels out above ~ 10 wt.% TiO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-particle oxide fillers including TiO2, SiO2 and Al2O3 have previously been shown to have a significant affect on the properties of both polymer and polymer gel electrolytes. In some cases, conductivity increases of one order of magnitude have been reported in crystalline PEO–base complexes. In this work, we report the effects of TiO2 and SiO2 on a poly(Li-AMPS)-based gel polyelectrolyte. Impedance spectroscopy and pfg-NMR spectroscopy indicates an increase in the number of available charge carriers with the addition of filler. An ideal amount of ceramic filler has been identified, with additional filler only saturating the system and reducing the conductivity below that of the pristine polyelectrolyte system. SEM micrographs suggest a model whereby the filler interacts readily with the sulfonate group; the surface area of the filler being an important factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polymerization of lithium 2-acrylamido-2-methyl-1-propane sulphonic acid with N,N′-dimethylacrylamide has yielded polyelectrolyte gels which have the favourable property of being single ion conductors. The use of single ion conductors ensures that the transport number of lithium is close to unity. The mobility of the lithium ion is still quite low in these systems, resulting in low ionic conductivity. To increase ionic conductivity more charge carriers can be added however competing effects arise between increasing the number of charge carriers and decreasing the mobility of these charge carriers. In this paper the monomer ratio of the copolymer polyelectrolyte is varied to investigate the effect increasing the number of charge carriers has on the ionic conductivity and lithium ion and solvent diffusivity using pfg-NMR. Ion dissociators such as TiO2 nano-particles and a zwitterionic compound based on 1-butylimidazolium-3-(N-butanesulfonate) have been added in an attempt to further increase the ionic conductivity of the system. It was found that the system with the highest ionic conductivity had the lowest solvent mobility in the presence of zwitterion. Without zwitterion the mobility of the solvent appears to determine the maximum ionic conductivity achievable.