985 resultados para Seasonally tropical dry forest
Resumo:
Light traps have been used widely to sample insect abundance and diversity, but their performance for sampling scarab beetles in tropical forests based on light source type and sampling hours throughout the night has not been evaluated. The efficiency of mercury-vapour lamps, cool white light and ultraviolet light sources in attracting Dynastinae, Melolonthinae and Rutelinae scarab beetles, and the most adequate period of the night to carry out the sampling was tested in different forest areas of Costa Rica. Our results showed that light source wavelengths and hours of sampling influenced scarab beetle catches. No significant differences were observed in trap performance between the ultraviolet light and mercury-vapour traps, whereas these two methods caught significantly more species richness and abundance than cool white light traps. Species composition also varied between methods. Large differences appear between catches in the sampling period, with the first five hours of the night being more effective than the last five hours. Because of their high efficiency and logistic advantages, we recommend ultraviolet light traps deployed during the first hours of the night as the best sampling method for biodiversity studies of those scarab beetles in tropical forests.
Resumo:
Abrupt climate changes from 18 to 15 thousand years before present (kyr BP) associated with Heinrich Event 1 (HE1) had a strong impact on vegetation patterns not only at high latitudes of the Northern Hemisphere, but also in the tropical regions around the Atlantic Ocean. To gain a better understanding of the linkage between high and low latitudes, we used the University of Victoria (UVic) Earth System-Climate Model (ESCM) with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era, the Last Glacial Maximum (LGM), and a Heinrich-like event with two different climate backgrounds (interglacial and glacial). We calculated mega-biomes from the plant-functional types (PFTs) generated by the model to allow for a direct comparison between model results and palynological vegetation reconstructions. Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well with biome reconstructions of the modern and LGM time slices, respectively, except that our pre-industrial simulation predicted the dominance of grassland in southern Europe and our LGM simulation resulted in more forest cover in tropical and sub-tropical South America. The HE1-like simulation with a glacial climate background produced sea-surface temperature patterns and enhanced inter-hemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. We found that the cooling of the Northern Hemisphere caused a southward shift of those PFTs that are indicative of an increased desertification and a retreat of broadleaf forests in West Africa and northern South America. The mega-biomes from our HE1 simulation agreed well with paleovegetation data from tropical Africa and northern South America. Thus, according to our model-data comparison, the reconstructed vegetation changes for the tropical regions around the Atlantic Ocean were physically consistent with the remote effects of a Heinrich event under a glacial climate background.
Resumo:
Living (Rose Bengal stained) benthic foraminifera were collected with a multicorer from six stations between 2°N and 12°S off West Africa. The foraminiferal communities in the investigated area reflect the direct influence of different productivity regimes, and are characterized by spatially and seasonally varying upwelling activity. At five stations, foraminiferal abundance coincides well with the gradient of surface productivity. However, at one station off the Congo River, the influence of strong fresh water discharge is documented. Although this station lies directly in the center of an upwelling area, foraminiferal standing stocks are surprisingly low. It is suggested that the Congo discharge may induce a fractionation of the organic matter into small and light particles of low nutritional content, by contrast to the relatively fast-sinking aggregates found in the centers of high productivity areas. Quality and quantity of the organic matter seem to influence the distribution of microhabitats as well. The flux of organic carbon to the sea-floor controls the sequence of degradation of organic matter in sediment and the position of different redox fronts. The vertical foraminiferal stratification within sediment closely parallels the distribution of oxygen and nitrate in porewater, and reflects different nutritive strategies and adaptation to different types of organic matter. The epifauna and shallow infauna colonize oxygenated sediments where labile organic matter is available. The intermediate infauna (M. barleeanum) is linked to the zone of nitrate reduction in sediments where epifaunal and shallow infaunal species are not competitive anymore, and must feed on bacterial biomass or on metabolizable nutritious particles produced by bacterial degradation of more refractory organic matter. The deep infauna shows its maximum distribution in anoxic sediments, where no easily metabolizable organic matter is available.
Resumo:
We constructed biogenic mass accumulation rate (MAR) time series for eastern Pacific core transects across the equator at ~105° and ~85°W and along the equator from 80° to 140°W. We used empirical orthogonal function (EOF) analysis to extract spatially coherent patterns of CaCO3 deposition for the last 150 kyr. EOF mode 1 (51% variance) is a CaCO3 MAR spike centered in marine oxygen isotope stage 2 (MIS 2) found under the South Equatorial Current. EOF mode 2 (19% of variance) is high north of the equator. EOF mode 3 (9% of variance) is an east-west mode centered along the North Equatorial Counter Current. The MIS 2 CaCO3 spike is the largest event in the eastern Pacific for the last 150 kyr: CaCO3 MARs are 2-3 times higher at 18 ka than elsewhere in the record, including MIS 6. It is caused by high CaCO3 production rather than minimal dissolution. EOF 2, while it resembles deep water flow patterns, nevertheless, shows coherence to Corg deposition and is probably also driven by CaCO3 production.
Resumo:
Mode of access: Internet.
Resumo:
"FS-610."
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The toxicity of aluminium (Al) to fish in acidic waters has been well documented. It was therefore expected that Al toxicity would be significant in fish communities in Gadjarrigamarndah (Gadji) Creek, a seasonally flowing stream in tropical northern Australia. This creek receives acidic groundwater containing elevated concentrations of Al from earlier land irrigation of treated mine tailings water from the former Nabarlek uranium mine. It was hypothesised that Al toxicity was reduced by high levels of silica (Si) in the water, and the subsequent formation of Al-silicate complexes. This prompted a laboratory assessment of the toxicity of Gadji Creek water to sac-fry of the native fish, Mogurnda mogurnda, followed by more detailed investigation of the toxicity of Al and the influence of Si in reducing Al toxicity. No mortality of M. mogurnda sac-fry was observed in two toxicity tests using Gadji Creek water collected in August 1997 and September 1998. The majority of Al (80-95%) was calculated to be complexed with humic substances and sulfate, with <1% being complexed with silicate. Assessment of the influence of silica on the acute toxicity of Al in the absence of natural organic complexants (i.e. in reconstituted freshwater, pH 5) revealed that Si reduced Al toxicity. As the molar ratio of Si:Al was increased, the percent survival of M. mogurnda sac-fry increased until there was no significant (P > 0.05) difference from the controls. However, speciation modelling again predicted that little (<3%) Al complexed with silicate, with the speciation and bioavailability of Al remaining constant as the molar ratio of Si:Al increased. Therefore, the original hypothesis that Al-silicate complexes in solution reduced the toxicity of Al to M. mogurnda could not be supported. This potential mechanism, and an alternative hypothesis, that Si competes with Al for binding sites at the fish gill surface, requires further investigation. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Rainforests in eastern Australia have been extensively cleared over the past two centuries. In recent decades, there have been increasing efforts to reforest some of these cleared lands, using a variety of methods, to meet a range of economic and environmental objectives. However, the extent to which the various styles of reforestation restore structure, composition and ecological function to cleared land is not presently understood. In this study, we develop and apply a method for quantifying the structural attributes of reforestation sites in tropical and subtropical Australia. The types of reforestation studied were plantation monocultures, mixed-species cabinet timber plots, diverse restoration plantings and unmanaged regrowth. Two age classes of reforestation were examined: 'young' (5-22 years), incorporating sites from all categories, and 'old' (30-70 years), in which only monoculture plantations and regrowth were represented. A total of 104 sites were surveyed including reference sites in intact rainforest and pasture. Intact rainforest was characterised by a suite of complex structural features including abundant special life forms (vines, epiphytes, hemi-epiphytes and strangler figs), a dense stand of trees in a range of size classes, a closed canopy, a shrubby understorey and a well-developed ground layer of leaf litter and woody debris. These features were lost on conversion to pasture. While all types of reforestation returned some elements of structural complexity to cleared land, young plantation monocultures, cabinet timber plots and young regrowth had a relatively simple structure. These sites typically had a low density of woody stems, a relatively open canopy and grassy ground cover, and lacked large trees, coarse woody debris and most special life forms. Restoration plantings and old regrowth were more complex, with a high density of woody stems, a relatively closed canopy and shrubby understorey. Old monoculture plantations in the tropics had acquired many of the structural attributes of intact forest, however this was not the case in the subtropics, where plantations were subject to more intensive management. The marked differences in structural complexity between sites suggest that the different types of reforestation practiced in eastern Australia are likely to vary considerably in their value as habitat for rainforest biota. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
At 38 sites in the dry sclerophyll forests of south-east Queensland, Australia, hollow-bearing trees were studied to determine the effects of past forestry practices on their density, size and spatial distribution. The density of hollow-bearing trees was reduced at sites that had been altered by poisoning and ringbarking of unmerchantable trees. This was especially the case for living hollow-bearing trees that were now at densities too low to support the full range of arboreal marsupials. Although there are presently enough hollow-bearing stags (i.e., dead hollow-bearing trees) to provide additional denning and nesting opportunities, the standing life of these hollow-bearing stags is lower than the living counterparts which means denning and nesting sites may be limited in the near future. The mean diameter at breast height (DBH) of hollow-bearing stags was significantly less than that of living hollow-bearing trees. This indicated that many large hollow-bearing stags may have a shorter standing life than smaller hollow-bearing stags. Hollow-bearing trees appear to be randomly distributed throughout the forest in both silviculturally treated and untreated areas. This finding is at odds with the suggestion by some forest managers that hollow-bearing trees should have a clumped distribution in dry sclerophyll forests of south-east Queensland.
Resumo:
We studied the relationships among plant and arbuscular mycorrhizal (AM) fungal diversity, and their effects on ecosystem function, in a series of replicate tropical forestry plots in the La Selva Biological Station, Costa Rica. Forestry plots were 12 yr old and were either monocultures of three tree species, or polycultures of the tree species with two additional understory species. Relationships among the AM fungal spore community, host species, plant community diversity and ecosystem phosphorus-use efficiency (PUE) and net primary productivity (NPP) were assessed. Analysis of the relative abundance of AM fungal spores found that host tree species had a significant effect on the AM fungal community, as did host plant community diversity (monocultures vs polycultures). The Shannon diversity index of the AM fungal spore community differed significantly among the three host tree species, but was not significantly different between monoculture and polyculture plots. Over all the plots, significant positive relationships were found between AM fungal diversity and ecosystem NPP, and between AM fungal community evenness and PUE. Relative abundance of two of the dominant AM fungal species also showed significant correlations with NPP and PUE. We conclude that the AM fungal community composition in tropical forests is sensitive to host species, and provide evidence supporting the hypothesis that the diversity of AM fungi in tropical forests and ecosystem NPP covaries.
Resumo:
Carpal glands (CG) of 105 feral pigs Sus domesticus, caught in the tropical lowland rainforest in northeast Queensland, Australia, between 1999 and 2004, were investigated to examine their function in chemical communication between animals, and their histology. Female feral pigs show significantly larger CG on the right leg than on the left leg while there were no side-specific differences in males. CG on both legs were significantly larger in reproductive than in non-reproductive females, but they did not differ between pregnant and lactating females. The results suggest that CG are involved in the defensive behaviour of reproductive females but not in the identification of the mother by piglets. The area of the left CG was significantly bigger in males compared to females, but no significant difference could be shown for the CG on the right legs. CG of same-aged boars did not change significantly in size throughout the year while females showed smaller CG on the left leg in January and February suggesting that CG may be involved in intra-matriarchal group communication, Same sized and aged boars did not show any correlations between the size of the CG and the weight of their testes and the serum levels of testosterone. These results suggest that CG are not involved in advertising dominance in boars. The histological investigation of CG showed that they are active in feral pigs in the lowland rainforest, consist mainly of apocrine tissue and that their hairs may play a role in distributing secretion.
Resumo:
Effects of monensin (Mon) on performance of Holstein-Friesian cows fed tropical grasses and cane molasses (M) or cereal grain were examined in three experiments. In experiment I (incomplete 4 x 4 Latin square), three rumen-fistulated cows [188 I I days in milk (DIM)] were fed mixed diets based on rhodes grass (Chloris gayana cv. Callide) bay where M was substituted for wheat grain (W) at rates of 0 (MO), 125 (M 125) or 250 (M250) g/kg dry matter (DM). A fourth diet contained M250 plus 0.02 g Mon/kg DM (M250 + Mon). Substituting M for W tended (P < 0.10) to decrease the ratio of rumen molar proportions of acetate+butyrate (Bu):propionate (Pr) (4.3 versus 3.8 and 4.0 for M0, M125 and M250, respectively). There were no treatment effects (P> 0.10) on intake, organic matter digestibility, milk production or liveweight (LW) change. In experiment 2, 48 cows (173 &PLUSMN; 28.3 DIM) grazing kikuyu (Pennisetum clandestinum cv. common) pastures and supplemented with maize silage and a grain-based concentrate were offered either M (2.6 kg DM/(cow day)) or barley grain (B) (2.7 kg DM/(cow day)). Within each supplement type, half were fed 0 or 320 mg of Mon/(cow day). There were Mon x supplement interactions (Mon x S; P < 0.05) on the rumen molar proportion of Pr and Bu at 15:00 h, with B + Mon having the highest value for Pr (0.259 mmol/mmol) and lowest value for Bu (0.121 mmol/mmol). A Mon x S effect (P < 0.05) on milk fat content was noted with Mon causing a lower value regardless of energy source (31 and 36 g/l versus 40 and 38 g/l for B + Mon, M + Mon, B - Mon and M - Mon, respectively). As a main effect, M as opposed to B, reduced yields of milk (P < 0.05; 16.21/(cow day) versus 18.01/(cow day)) and protein (P < 0.05; 479 g/(cow day) versus 538 g/(cow day)). Monensin reduced milk fat yield (P < 0.05; 669 g/(cow day) versus 562 g/(cow day)), raised milk protein concentration (P < 0.05; 31 g/l versus 29 g/l) and caused LW gain rather than loss (P < 0.05; +0.06 kg/(cow day) versus -0.30 kg/(cow day)). No treatment effects on pasture intake were noted. In experiment 3, 48 cows (91 &PLUSMN; 16.1 DIM) grazing kikuyu pasture and supplemented with grain-based concentrate, sugar cane silage and 2.7 kg DM(cow day) of M were supplemented with either 0 or 320 mg Mon/(cow day). Monensin reduced (P < 0.05) milk fat content (33 g/l versus 30 g/l) and tended (P < 0.10) to reduce milk protein content (29 g/l versus 28 g/l). No effects of Mon on other milk production parameters, LW change or pasture intake were noted. Feeding monensin to mid-lactation Holstein-Friesian cows offered diets based on tropical grasses, and cane molasses or grain, improves rumen fermentation efficiency, thereby improving energy efficiency resulting in higher LW gain. Monensin had no effect on milk yield, but reduced milk fat concentration.
Resumo:
The Wet Tropics World Heritage Area in Far North Queens- land, Australia consists predominantly of tropical rainforest and wet sclerophyll forest in areas of variable relief. Previous maps of vegetation communities in the area were produced by a labor-intensive combination of field survey and air-photo interpretation. Thus,. the aim of this work was to develop a new vegetation mapping method based on imaging radar that incorporates topographical corrections, which could be repeated frequently, and which would reduce the need for detailed field assessments and associated costs. The method employed G topographic correction and mapping procedure that was developed to enable vegetation structural classes to be mapped from satellite imaging radar. Eight JERS-1 scenes covering the Wet Tropics area for 1996 were acquired from NASDA under the auspices of the Global Rainforest Mapping Project. JERS scenes were geometrically corrected for topographic distortion using an 80 m DEM and a combination of polynomial warping and radar viewing geometry modeling. An image mosaic was created to cover the Wet Tropics region, and a new technique for image smoothing was applied to the JERS texture bonds and DEM before a Maximum Likelihood classification was applied to identify major land-cover and vegetation communities. Despite these efforts, dominant vegetation community classes could only be classified to low levels of accuracy (57.5 percent) which were partly explained by the significantly larger pixel size of the DEM in comparison to the JERS image (12.5 m). In addition, the spatial and floristic detail contained in the classes of the original validation maps were much finer than the JERS classification product was able to distinguish. In comparison to field and aerial photo-based approaches for mapping the vegetation of the Wet Tropics, appropriately corrected SAR data provides a more regional scale, all-weather mapping technique for broader vegetation classes. Further work is required to establish an appropriate combination of imaging radar with elevation data and other environmental surrogates to accurately map vegetation communities across the entire Wet Tropics.
A Site Description of the CARICOMP Mangrove, Seagrass and Coral Reef Sites in Bocas del Toro, Panama
Resumo:
Bocas del Toro is located in the western region of the Republic of Panama. It is part of a province of approximately 8917 km(2) with an estimated 68% of its area covered by tropical rainforest. The area receives 2870 mm/year of rainfall. The dry and rainy seasons are not clearly defined. There are two periods each of low and high rainfall, March and September-October, and July and December, respectively. Mangrove forests, seagrass meadows and coral reefs are vast, covering large areas in the shallow waters surrounding the islands of the archipelago and along the mainland coast. The CARICOMP sites were established in 1998-99 and are periodically monitored following Level I protocol. Herein we describe the sites in a regional context and present the baseline data for each site. This paper fulfills the requirements of the formal site description for CARICOMP monitoring sites.