960 resultados para Scheduling, heuristic algorithms, blocking flow shop
Resumo:
23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2015). 4 to 6, Mar, 2015. Turku, Finland.
Resumo:
Demo presented in 12th Workshop on Models and Algorithms for Planning and Scheduling Problems (MAPSP 2015). 8 to 12, Jun, 2015. La Roche-en-Ardenne, Belgium. Extended abstract.
Resumo:
23rd International Conference on Real-Time Networks and Systems (RTNS 2015). 4 to 6, Nov, 2015, Main Track. Lille, France. Best Paper Award Nominee
Resumo:
13th IEEE/IFIP International Conference on Embedded and Ubiquitous Computing (EUC 2015). 21 to 23, Oct, 2015, Session W1-A: Multiprocessing and Multicore Architectures. Porto, Portugal.
Resumo:
This paper analyses the performance of a Genetic Algorithm using two new concepts, namely a static fitness function including a discontinuity measure and a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. In both cases, experiments reveal superior results in terms of speed and convergence to achieve a solution.
Resumo:
The theory of fractional calculus goes back to the beginning of thr throry of differential calculus but its inherent complexity postponed the applications of the associated concepts. In the last decade the progress in the areas of chaos and fractals revealed subtle relationships with the fractional calculus leading to an increasing interest in the development of the new paradigm. In the area of automaticcontrol preliminary work has already been carried out but the proposed algorithms are restricted to the frequency domain. The paper discusses the design of fractional-order discrete-time controllers. The algorithms studied adopt the time domein, which makes them suited for z-transform analusis and discrete-time implementation. The performance of discrete-time fractional-order controllers with linear and non-linear systems is also investigated.
Resumo:
Paper/Poster presented in Work in Progress Session, 28th GI/ITG International Conference on Architecture of Computing Systems (ARCS 2015). 24 to 26, Mar, 2015. Porto, Portugal.
Resumo:
Consumer-electronics systems are becoming increasingly complex as the number of integrated applications is growing. Some of these applications have real-time requirements, while other non-real-time applications only require good average performance. For cost-efficient design, contemporary platforms feature an increasing number of cores that share resources, such as memories and interconnects. However, resource sharing causes contention that must be resolved by a resource arbiter, such as Time-Division Multiplexing. A key challenge is to configure this arbiter to satisfy the bandwidth and latency requirements of the real-time applications, while maximizing the slack capacity to improve performance of their non-real-time counterparts. As this configuration problem is NP-hard, a sophisticated automated configuration method is required to avoid negatively impacting design time. The main contributions of this article are: 1) An optimal approach that takes an existing integer linear programming (ILP) model addressing the problem and wraps it in a branch-and-price framework to improve scalability. 2) A faster heuristic algorithm that typically provides near-optimal solutions. 3) An experimental evaluation that quantitatively compares the branch-and-price approach to the previously formulated ILP model and the proposed heuristic. 4) A case study of an HD video and graphics processing system that demonstrates the practical applicability of the approach.
Resumo:
Poster presented in Work in Progress Session, 28th GI/ITG International Conference on Architecture of Computing Systems (ARCS 2015). 24 to 26, Mar, 2015. Porto, Portugal.
Resumo:
Presented at 21st IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2015). 19 to 21, Aug, 2015, pp 122-131. Hong Kong, China.
Resumo:
Canadian Journal of Civil Engineering 36(10) 1605–16
Resumo:
A optimização nas aplicações modernas assume um carácter fortemente interdisciplinar, relacionando-se com a necessidade de integração de diferentes técnicas e paradigmas na resolução de problemas reais complexos. O problema do escalonamento é recorrente no planeamento da produção. Sempre que uma ordem de fabrico é lançada, é necessário determinar que recursos serão utilizados e em que sequência as atividades serão executadas, para otimizar uma dada medida de desempenho. Embora ainda existam empresas a abordar o problema do escalonamento através de simples heurísticas, a proposta de sistemas de escalonamento tem-se evidenciado na literatura. Pretende-se nesta dissertação, a realização da análise de desempenho de Técnicas de Optimização, nomeadamente as meta-heurísticas, na resolução de problemas de optimização complexos – escalonamento de tarefas, particularmente no problema de minimização dos atrasos ponderados, 1||ΣwjTj. Assim sendo, foi desenvolvido um protótipo que serviu de suporte ao estudo computacional, com vista à avaliação do desempenho do Simulated Annealing (SA) e o Discrete Artificial Bee Colony (DABC). A resolução eficiente de um problema requer, em geral, a aplicação de diferentes métodos, e a afinação dos respetivos parâmetros. A afinação dos parâmetros pode permitir uma maior flexibilidade e robustez mas requer uma inicialização cuidadosa. Os parâmetros podem ter uma grande influência na eficiência e eficácia da pesquisa. A sua definição deve resultar de um cuidadoso esforço experimental no sentido da respectiva especificação. Foi usado, no âmbito deste trabalho de mestrado, para suportar a fase de parametrização das meta-heurísticas em análise, o planeamento de experiências de Taguchi. Da análise dos resultados, foi possível concluir que existem vantagem estatisticamente significativa no desempenho do DABC, mas quando analisada a eficiência é possível concluir que há vantagem do SA, que necessita de menos tempo computacional.
Resumo:
Abstract: Preferential flow and transport through macropores affect plant water use efficiency and enhance leaching of agrochemicals and the transport of colloids, thereby increasing the risk for contamination of groundwater resources. The effects of soil compaction, expressed in terms of bulk density (BD), and organic carbon (OC) content on preferential flow and transport were investigated using 150 undisturbed soil cores sampled from 15 × 15–m grids on two field sites. Both fields had loamy textures, but one site had significantly higher OC content. Leaching experiments were conducted in each core by applying a constant irrigation rate of 10 mm h−1 with a pulse application of tritium tracer. Five percent tritium mass arrival times and apparent dispersivities were derived from each of the tracer breakthrough curves and correlated with texture, OC content, and BD to assess the spatial distribution of preferential flow and transport across the investigated fields. Soils from both fields showed strong positive correlations between BD and preferential flow. Interestingly, the relationships between BD and tracer transport characteristics were markedly different for the two fields, although the relationship between BD and macroporosity was nearly identical. The difference was likely caused by the higher contents of fines and OC at one of the fields leading to stronger aggregation, smaller matrix permeability, and a more pronounced pipe-like pore system with well-aligned macropores.
Resumo:
Recent embedded processor architectures containing multiple heterogeneous cores and non-coherent caches renewed attention to the use of Software Transactional Memory (STM) as a building block for developing parallel applications. STM promises to ease concurrent and parallel software development, but relies on the possibility of abort conflicting transactions to maintain data consistency, which in turns affects the execution time of tasks carrying transactions. Because of this fact the timing behaviour of the task set may not be predictable, thus it is crucial to limit the execution time overheads resulting from aborts. In this paper we formalise a FIFO-based algorithm to order the sequence of commits of concurrent transactions. Then, we propose and evaluate two non-preemptive and one SRP-based fully-preemptive scheduling strategies, in order to avoid transaction starvation.
Resumo:
Presented at IEEE Real-Time Systems Symposium (RTSS 2015). 1 to 4, Dec, 2015. San Antonio, U.S.A..