950 resultados para Scaling sStrategies


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Canalization is defined as the stability of a genotype against minor variations in both environment and genetics. Genetic variation in degree of canalization causes heterogeneity of within-family variance. The aims of this study are twofold: (1) quantify genetic heterogeneity of (within-family) residual variance in Atlantic salmon and (2) test whether the observed heterogeneity of (within-family) residual variance can be explained by simple scaling effects. RESULTS: Analysis of body weight in Atlantic salmon using a double hierarchical generalized linear model (DHGLM) revealed substantial heterogeneity of within-family variance. The 95% prediction interval for within-family variance ranged from ~0.4 to 1.2 kg2, implying that the within-family variance of the most extreme high families is expected to be approximately three times larger than the extreme low families. For cross-sectional data, DHGLM with an animal mean sub-model resulted in severe bias, while a corresponding sire-dam model was appropriate. Heterogeneity of variance was not sensitive to Box-Cox transformations of phenotypes, which implies that heterogeneity of variance exists beyond what would be expected from simple scaling effects. CONCLUSIONS: Substantial heterogeneity of within-family variance was found for body weight in Atlantic salmon. A tendency towards higher variance with higher means (scaling effects) was observed, but heterogeneity of within-family variance existed beyond what could be explained by simple scaling effects. For cross-sectional data, using the animal mean sub-model in the DHGLM resulted in biased estimates of variance components, which differed substantially both from a standard linear mean animal model and a sire-dam DHGLM model. Although genetic differences in canalization were observed, selection for increased canalization is difficult, because there is limited individual information for the variance sub-model, especially when based on cross-sectional data. Furthermore, potential macro-environmental changes (diet, climatic region, etc.) may make genetic heterogeneity of variance a less stable trait over time and space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Performance in cross-country skiing is influenced by the skier’s ability to continuously produce propelling forces and force magnitude in relation to the net external forces. A surrogate indicator of the “power supply” in cross-country skiing would be a physiological variable that reflects an important performance-related capability, whereas the body mass itself is an indicator of the “power demand” experienced by the skier. To adequately evaluate an elite skier’s performance capability, it is essential to establish the optimal ratio between the physiological variable and body mass. The overall aim of this doctoral thesis was to investigate the importance of body-mass exponent optimization for the evaluation of performance capability in cross-country skiing. Methods In total, 83 elite cross-country skiers (56 men and 27 women) volunteered to participate in the four studies. The physiological variables of maximal oxygen uptake (V̇O2max) and oxygen uptake corresponding to a blood-lactate concentration of 4 mmol∙l-1 (V̇O2obla) were determined while treadmill roller skiing using the diagonal-stride technique; mean oxygen uptake (V̇O2dp) and upper-body power output (Ẇ) were determined during double-poling tests using a ski-ergometer. Competitive performance data for elite male skiers were collected from two 15-km classical-technique skiing competitions and a 1.25-km sprint prologue; additionally, a 2-km double-poling roller-skiing time trial using the double-poling technique was used as an indicator of upper-body performance capability among elite male and female junior skiers. Power-function modelling was used to explain the race and time-trial speeds based on the physiological variables and body mass. Results The optimal V̇O2max-to-mass ratios to explain 15-km race speed were V̇O2max divided by body mass raised to the 0.48 and 0.53 power, and these models explained 68% and 69% of the variance in mean skiing speed, respectively; moreover, the 95% confidence intervals (CI) for the body-mass exponents did not include either 0 or 1. For the modelling of race speed in the sprint prologue, body mass failed to contribute to the models based on V̇O2max, V̇O2obla, and V̇O2dp. The upper-body power output-to-body mass ratio that optimally explained time-trial speed was Ẇ ∙ m-0.57 and the model explained 63% of the variance in speed. Conclusions The results in this thesis suggest that V̇O2max divided by the square root of body mass should be used as an indicator of performance in 15-km classical-technique races among elite male skiers rather than the absolute or simple ratio-standard scaled expression. To optimally explain an elite male skier’s performance capability in sprint prologues, power-function models based on oxygen-uptake variables expressed absolutely are recommended. Moreover, to evaluate elite junior skiers’ performance capabilities in 2-km double-poling roller-skiing time trials, it is recommended that Ẇ divided by the square root of body mass should be used rather than absolute or simple ratio-standard scaled expression of power output.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Misoprostol is established for the treatment of incomplete abortion but has not been systematically assessed when provided by midwives at district level in a low-resource setting. We investigated the effectiveness and safety of midwives diagnosing and treating incomplete abortion with misoprostol, compared with physicians. METHODS: We did a multicentre randomised controlled equivalence trial at district level at six facilities in Uganda. Eligibility criteria were women with signs of incomplete abortion. We randomly allocated women with first-trimester incomplete abortion to clinical assessment and treatment with misoprostol either by a physician or a midwife. The randomisation (1:1) was done in blocks of 12 and was stratified for study site. Primary outcome was complete abortion not needing surgical intervention within 14-28 days after initial treatment. The study was not masked. Analysis of the primary outcome was done on the per-protocol population with a generalised linear-mixed effects model. The predefined equivalence range was -4% to 4%. The trial was registered at ClinicalTrials.gov, number NCT01844024. FINDINGS: From April 30, 2013, to July 21, 2014, 1108 women were assessed for eligibility. 1010 women were randomly assigned to each group (506 to midwife group and 504 to physician group). 955 women (472 in the midwife group and 483 in the physician group) were included in the per-protocol analysis. 452 (95·8%) of women in the midwife group had complete abortion and 467 (96·7%) in the physician group. The model-based risk difference for midwife versus physician group was -0·8% (95% CI -2·9 to 1·4), falling within the predefined equivalence range (-4% to 4%). The overall proportion of women with incomplete abortion was 3·8% (36/955), similarly distributed between the two groups (4·2% [20/472] in the midwife group, 3·3% [16/483] in the physician group). No serious adverse events were recorded. INTERPRETATION: Diagnosis and treatment of incomplete abortion with misoprostol by midwives is equally safe and effective as when provided by physicians, in a low-resource setting. Scaling up midwives' involvement in treatment of incomplete abortion with misoprostol at district level would increase access to safe post-abortion care. FUNDING: The Swedish Research Council, Karolinska Institutet, and Dalarna University.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was 1) to validate the 0.5 body-mass exponent for maximal oxygen uptake (V. O2max) as the optimal predictor of performance in a 15 km classical-technique skiing competition among elite male cross-country skiers and 2) to evaluate the influence of distance covered on the body-mass exponent for V. O2max among elite male skiers. Twenty-four elite male skiers (age: 21.4±3.3 years [mean ± standard deviation]) completed an incremental treadmill roller-skiing test to determine their V. O2max. Performance data were collected from a 15 km classicaltechnique cross-country skiing competition performed on a 5 km course. Power-function modeling (ie, an allometric scaling approach) was used to establish the optimal body-mass exponent for V . O2max to predict the skiing performance. The optimal power-function models were found to be race speed = 8.83⋅(V . O2max m-0.53) 0.66 and lap speed = 5.89⋅(V . O2max m-(0.49+0.018lap)) 0.43e0.010age, which explained 69% and 81% of the variance in skiing speed, respectively. All the variables contributed to the models. Based on the validation results, it may be recommended that V. O2max divided by the square root of body mass (mL⋅min−1 ⋅kg−0.5) should be used when elite male skiers’ performance capability in 15 km classical-technique races is evaluated. Moreover, the body-mass exponent for V . O2max was demonstrated to be influenced by the distance covered, indicating that heavier skiers have a more pronounced positive pacing profile (ie, race speed gradually decreasing throughout the race) compared to that of lighter skiers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Annually, 2.8 million neonatal deaths occur worldwide, despite the fact that three-quarters of them could be prevented if available evidence-based interventions were used. Facilitation of community groups has been recognized as a promising method to translate knowledge into practice. In northern Vietnam, the Neonatal Health - Knowledge Into Practice trial evaluated facilitation of community groups (2008-2011) and succeeded in reducing the neonatal mortality rate (adjusted odds ratio, 0.51; 95 % confidence interval 0.30-0.89). The aim of this paper is to report on the process (implementation and mechanism of impact) of this intervention. METHODS: Process data were excerpted from diary information from meetings with facilitators and intervention groups, and from supervisor records of monthly meetings with facilitators. Data were analyzed using descriptive statistics. An evaluation including attributes and skills of facilitators (e.g., group management, communication, and commitment) was performed at the end of the intervention using a six-item instrument. Odds ratios were analyzed, adjusted for cluster randomization using general linear mixed models. RESULTS: To ensure eight active facilitators over 3 years, 11 Women's Union representatives were recruited and trained. Of the 44 intervention groups, composed of health staff and commune stakeholders, 43 completed their activities until the end of the study. In total, 95 % (n = 1508) of the intended monthly meetings with an intervention group and a facilitator were conducted. The overall attendance of intervention group members was 86 %. The groups identified 32 unique problems and implemented 39 unique actions. The identified problems targeted health issues concerning both women and neonates. Actions implemented were mainly communication activities. Communes supported by a group with a facilitator who was rated high on attributes and skills (n = 27) had lower odds of neonatal mortality (odds ratio, 0.37; 95 % confidence interval, 0.19-0.73) than control communes (n = 46). CONCLUSIONS: This evaluation identified several factors that might have influenced the outcomes of the trial: continuity of intervention groups' work, adequate attributes and skills of facilitators, and targeting problems along a continuum of care. Such factors are important to consider in scaling-up efforts.