948 resultados para Sand movies
Resumo:
The author studied the possibility of propagating "Samambaia de Metro" Polypodium Subauriculatum, by means of spores, since vegetative multiplication is hard to obtain for large numbers of plants. Five treatments were tried, with 4 replications. I - Coarse "Flores Floor" and fine "Flores Floor". II - Coarse Flores Floor and moss. III - Coarse sand, Flores Floor and brick powder VI - Coarse sand, Flores Floor and brick powder V - Coarse sand and Flores Floor. The best germination was obtained with treatment V (Coarse sand et the boltom), topesed by Flores Floor. The pots were permanently kept on a tray pul of water, in a Greenhouse. This method provided over 4.000 offspring, which at 2 ½ years of age were of a size mitable for ornamental use.
Resumo:
In order to study the phosphorus availability from various phosphates fertilizers an experiment was performed according to the biological seedling method of Neubauer. The physico-chemical properties of the soil "terra roxa-misturada", a red soil derived from basaltic rocks are given in the Portuguese text. Rice (Oryza sativa, L.) instead of rye (Secale cereale, L.) was used. Five replications of each of the following treatments were made: 1 - check, with 350 g of sand 2 - 350 g of sand plus 100 g of soil 3 - 350 g of sand and plus 100 g of soil plus 40 mg of P2O5, from superphosphate. 4 - 350 g of sand plus 100 g of soil plus 40 mg of P2O5. from Olinda (Brazil) phosphorite. 5 - 350 g of sand plus 100 g of soil plus 40 mg of P2O5 from Florida (U. S. A.) phosphorite. 6 - 350 g os sand plus 100 g of soil plus 40 mg of P2O5 from Hyperphosphate, a commertial name of a North African (Gafsa) phosphorite. 7 - 350 g of sand plus 100 g of soil plus 40 mg of P2O5 from Araxá (Brazil) apatite. After 18 days of growth, the roots and tops of rice seedlings were harvested and analysed for phosphorus, and the results are summarized in table 1. Table 1 - Milligrams of P2O5 determined in rice seedlings. Treatments Mean of 5 replications mg of P2O5 1 ..................... 24.196 2 ..................... 23.850 3 ..................... 30.724 4 ..................... 27.620 5 ..................... 27.480 6..................... 30.210 7 ..................... 26.032 The least significant difference at the 5% level by Tukey's procedure for comparisons among the treatments means is 1.365 mg of P(2)0. It is interesting to observe that rice plants did not take any phosphorus from the soil according to he data of the treatments n.° 1 and n.° 2. This can be explained by the high phosphorus fixing capacity of the soil "terra roxa misturada".
Resumo:
Pineapple plants when grown in the greenhouse by the sand culture technique in order to study the effects of deficiencies of macronutrients in growth, yield, leaf and fruit composition, the main results were the following. As a result of the several treatments, yield decreased in the order: Complete Minus Mg Minus S Minus Ca Minus K; nitrogen and phosphorus deficiente plants did not bear fruit. Leaf analyses (see Table 5-1) showed that the ommission of given element from the nutrient solution always caused a decrease in its level in the green tissue. As seen in Table 5-2 the lack of macronutrients had certain effects on fruit composition: acidity increased in all cases excet in the minus Mg fruits; ash usually decreased reaching its lowest valued in fruits from the minus K plants; when compared to fruits picked in the "normal" plants, those lacking K showed a marked decrease both in brix and in total sugars as well; sulfur deficiency also brought a net reduction in the sugar content. Table 5-1. Levels of macronutrients found in pinapple leaves. Elements Treatment Percent of dry matter Nitrogen (N) Complete 1.29 Minus N 0.78 Phosphorus (P) Complete 0.12 Minus P .05 Potassium (K) Complete 2.28 Minus K 0.16 Calcium (Ca) Complete 1.19 Minus Ca 1.10 Magnesium (Mg) Complete 0.41 Minus Mg .29 Sulfur (S) Complete 1.00 Minus S .65 Table 5-2. Effects of macronutrients deficiency in yield and fruit characteristics. Treatment Ave. weight of Acidity As per Brix Total sugars fruits (gm) per cent cent per cent Complete 1.031 1.16 0.40 14.7 10.8 Minus N no fruit was produced Minus P no fruit was produced Minus K 246 1.44 0.26 11.9 8.3 Minus Ca 513 1.40 0.35 17.8 14.3 Minus Mg 957 0.97 0.38 15.4 13.0 Minus S 576 1.42 0.46 17.1 6.5