966 resultados para SUBUNIT MESSENGER-RNAS
Resumo:
Background: MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells, three stages of fetal growth, day-old neonate, and the adult. Results: Twelve potential novel miR were detected that did not match previously reported sequences. In addition, a number of miR previously reported to be expressed in mammalian muscle were detected, having a variety of abundance patterns through muscle development. Muscle-specific miR-206 was nearly absent in proliferating satellite cells in culture, but was the highest abundant miR at other time points evaluated. In addition, miR-1 was moderately abundant throughout developmental stages with highest abundance in the adult. In contrast, miR-133 was moderately abundant in adult muscle and either not detectable or lowly abundant throughout fetal and neonate development. Changes in abundance of ubiquitously expressed miR were also observed. MiR-432 abundance was highest at the earliest stage of fetal development tested (60 day-old fetus) and decreased throughout development to the adult. Conversely, miR-24 and miR-27 exhibited greatest abundance in proliferating satellite cells and the adult, while abundance of miR-368, miR-376, and miR-423-5p was greatest in the neonate. Conclusion: These data present a complete set of transcriptome profiles to evaluate miR abundance at specific stages of skeletal muscle growth in swine. Identification of these miR provides an initial group of miR that may play a vital role in muscle development and growth.
Resumo:
Objective: To evaluate the effects of local administration of epidermal growth factor (EGF) located within liposomes on recruitment of osteoclasts during mechanical force in rats. Materials and Methods: An orthodontic elastic band was inserted between the left upper first and second molars, to move mesially the first molar. Rats were randomly divided into 4 groups (n = 8): EGF (2 ng/mu L) located within liposomes (group 1), liposomes only (group 2), soluble EGF (2 ng/mu L; group 3), or vehicle alone (group 4). The solutions were injected into the region of the root furcation of the left first molar after elastic band insertion. Tooth movement was measured using a plaster model of the maxilla, and the number of osteoclasts recruited at the pressure side of the first molar was histologically evaluated. Results: Intergroup analysis showed that there was no significant difference between group 2 and group 4 (P >.05) and between group 1 and group 3 (P >.05). However, group 1 and group 3 exhibited greater differences in tooth movement than group 2 and group 4 (P <.05). On the other hand, group 1 showed greater tooth movement than groups 2 and 4 with statistical significance (P <.01). The increase in the number of osteoclasts in group 1 was significantly higher than in the other groups (P <.05). Conclusion: Exogenous EGF-liposome administration has an additive effect when compared with soluble EGF on the rate of osteoclast recruitment, producing faster bone resorption and tooth movement.
Resumo:
Background: Endoplasmic reticulum (ER) stress has pathophysiological relevance in vascular diseases and merges with proteasome function. Proteasome inhibition induces cell stress and may have therapeutic implications. However, whether proteasome inhibition potentiates ER stress-induced apoptosis and the possible mechanisms involved in this process are unclear. Methodology/Principal Findings: Here we show that proteasome inhibition with MG132, per se at non-lethal levels, sensitized vascular smooth muscle cells to caspase-3 activation and cell death during ER stress induced by tunicamycin (Tn). This effect was accompanied by suppression of both proadaptive (KDEL chaperones) and proapoptotic (CHOP/GADD153) unfolded protein response markers, although, intriguingly, the splicing of XBP1 was markedly enhanced and sustained. In parallel, proteasome inhibition completely prevented ER stress-induced increase in NADPH oxidase activity, as well as increases in Nox4 isoform and protein disulfide isomerase mRNA expression. Increased Akt phosphorylation due to proteasome inhibition partially offset the proapoptotic effect of Tn or MG132. Although proteasome inhibition enhanced oxidative stress, reactive oxygen species scavenging had no net effect on sensitization to Tn or MG132-induced cell death. Conclusion/Relevance: These data indicate unfolded protein response-independent pathways whereby proteasome inhibition sensitizes vascular smooth muscle to ER stress-mediated cell death. This may be relevant to understand the therapeutic potential of such compounds in vascular disease associated with increased neointimal hyperplasia.
Resumo:
The ABO blood group is the most important blood group system in transfusion medicine and organ transplantation. To date, more than 160 ABO alleles have been identified by molecular investigation. Almost all ABO genotyping studies have been performed in blood donors and families and for investigation of ABO subgroups detected serologically. The aim of the present study was to perform ABO genotyping in patients with leukemia. Blood samples were collected from 108 Brazilian patients with chronic myeloid leukemia (N = 69), chronic lymphoid leukemia (N = 13), acute myeloid leukemia (N = 15), and acute lymphoid leukemia (N = 11). ABO genotyping was carried out using allele specific primer polymerase chain reaction followed by DNA sequencing. ABO*001 was the most common allele found, followed by ABO*022 and by ABO*A103. We identified 22 new ABO*(variants) in the coding region of the ABO gene in 25 individuals with leukemia (23.2%). The majority of ABO variants was detected in O alleles (15/60.0%). In 5 of 51 samples typed as blood group O (9.8%), we found non-deletional ABO*O alleles. Elucidation of the diversity of this gene in leukemia and in other diseases is important for the determination of the effect of changes in an amino acid residue on the specificity and activity of ABO glycosyltransferases and their function. In conclusion, this is the first report of a large number of patients with leukemia genotyped for ABO. The findings of this study indicate that there is a high level of recombinant activity in the ABO gene in leukemia patients, revealing new ABO variants.
Resumo:
Background: Cardiac remodeling is generally an adverse sign and is associated with heart failure (HF) progression. NFkB, an important transcription factor involved in many cell survival pathways, has been implicated in the remodeling process, but its role in the heart is still controversial. Recently, a promoter polymorphism associated with a lesser activation of the NFKB1 gene was also associated with Dilated Cardiomyopathy. The purpose of this study was to evaluate the association of this polymorphism with clinical and functional characteristics of heart failure patients of different etiologies. Methods: A total of 493 patients with HF and 916 individuals from a cohort of individuals from the general population were investigated. The NFKB1-94 insertion/deletion ATTG polymorphism was genotyped by High Resolution Melt discrimination. Allele and genotype frequencies were compared between groups. In addition, frequencies or mean values of different phenotypes associated with cardiovascular disease were compared between genotype groups. Finally, patients were prospectively followed-up for death incidence and genotypes for the polymorphism were compared regarding disease onset and mortality incidence in HF patients. Results: We did not find differences in genotype and allelic frequencies between cases and controls. Interestingly, we found an association between the ATTG(1)/ATTG(1) genotype with right ventricle diameter (P = 0.001), left ventricle diastolic diameter (P = 0.04), and ejection fraction (EF) (P = 0.016), being the genotype ATTG(1)/ATTG(1) more frequent in patients with EF lower than 50% (P = 0.01). Finally, we observed a significantly earlier disease onset in ATTG(1)/ATTG(1) carriers. Conclusion: There is no genotype or allelic association between the studied polymorphism and the occurrence of HF in the tested population. However, our data suggest that a diminished activation of NFKB1, previously associated with the ATTG(1)/ATTG(1) genotype, may act modulating on the onset of disease and, once the individual has HF, the genotype may modulate disease severity by increasing cardiac remodeling and function deterioration.
Resumo:
Background: Metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinase 2 (TIMP-2) participate in the degeneration of the extracellular matrix and are associated with carcinogenesis. MMP-2 is one of the main metalloproteinases active in neoplasia and is a marker of the malignant phenotype. Since the biological behavior of medullary thyroid carcinoma (MTC) varies widely, the present study was undertaken to determine if there is a correlation between the clinical evolution of MTC and the immunohistochemically detected expression of these enzymes in thyroid surgical specimens containing MTC. If so, their expression would be a novel indicator of the prognosis of MTC. Methods: Thirty-seven patients with MTC who had undergone thyroid surgery were followed for an average of 73 months. Immunohistochemical staining for metalloproteinase-related enzymes was performed in surgical paraffin blocks. The clinical status of the patients after surgery and at the end of the study period was characterized to determine correlations between these and the immunohistochemical markers. A value of p < 0.05 was considered statistically significant. Results: At the end of the study period, 15 patients (40.5%) were alive and without evidence of MTC, 17 (45.9%) had persistent MTC, and 5 (13.5%) had a relapse of their neoplasia. Four patients (10.8%) died during the course of the study. There was a significant correlation (p = 0.0005) between the immunohistochemical staining for MMP-2 and the clinical condition of the patients at the end of the study period, and a correlation between the state of apparent cure compared to persistence of MTC after thyroid surgery (p = 0.0207). No significant correlations were observed between either TIMP-2 expression or immune marking of metastatic lymph nodes and the clinical variables studied. Conclusion: Immunohistochemical expression of MMP-2 in thyroid surgical specimens from patients with MTC is a novel indicator of the prognosis of this cancer.
Resumo:
Dopamine (DA) is known as a primary regulator of prolactin secretion (PRL) and angiotensin II (Ang II) has been recognized as one brain inhibitory factor of this secretion. In this work, estrogen-primed or unprimed ovariectornized rats were submitted to the microinjection of saline or Ang II after previous microinjection of saline or of DA antagonist (haloperidol, sulpiride or SCH) both in the medial preoptic area (MPOA). Our study of these interactions has shown that 1) estrogen-induced PRL secretion is mediated by Ang II and DA actions in the MPOA, i.e. very high plasma PRL would be prevented by inhibitory action of Ang II, while very low levels would be prevented in part by stimulatory action of DA through D-2 receptors, 2) the inhibitory action of Ang II depends on estrogen and is mediated in part by inhibitory action of DA through D, receptors and in other part by inhibition of stimulatory action of DA through D2 receptors.
Resumo:
Melanoma is a highly aggressive and therapy resistant tumor for which the identification of specific markers and therapeutic targets is highly desirable. We describe here the development and use of a bioinformatic pipeline tool, made publicly available under the name of EST2TSE, for the in silico detection of candidate genes with tissue-specific expression. Using this tool we mined the human EST (Expressed Sequence Tag) database for sequences derived exclusively from melanoma. We found 29 UniGene clusters of multiple ESTs with the potential to predict novel genes with melanoma-specific expression. Using a diverse panel of human tissues and cell lines, we validated the expression of a subset of three previously uncharacterized genes (clusters Hs.295012, Hs.518391, and Hs.559350) to be highly restricted to melanoma/melanocytes and named them RMEL1, 2 and 3, respectively. Expression analysis in nevi, primary melanomas, and metastatic melanomas revealed RMEL1 as a novel melanocytic lineage-specific gene up-regulated during melanoma development. RMEL2 expression was restricted to melanoma tissues and glioblastoma. RMEL3 showed strong up-regulation in nevi and was lost in metastatic tumors. Interestingly, we found correlations of RMEL2 and RMEL3 expression with improved patient outcome, suggesting tumor and/or metastasis suppressor functions for these genes. The three genes are composed of multiple exons and map to 2q12.2, 1q25.3, and 5q11.2, respectively. They are well conserved throughout primates, but not other genomes, and were predicted as having no coding potential, although primate-conserved and human-specific short ORFs could be found. Hairpin RNA secondary structures were also predicted. Concluding, this work offers new melanoma-specific genes for future validation as prognostic markers or as targets for the development of therapeutic strategies to treat melanoma.
Resumo:
Vascular endothelial growth factor (VEGF) is a homodimeric glycoprotein produced mostly in endothelial cells and its transcription is regulated by a variety of growth factors and cytokines. VEGF plays many relevant roles, and three functional polymorphisms in the promoter region of the VEGF gene (C-2578A, G-1154A, and G-634C) have been associated with disease conditions. Although some studies suggest that interethnic differences exist in the distribution of these variants, no previous study has examined this hypothesis in admixed populations. We examined the distribution of these three clinically relevant VEGF single-nucleotide polymorphisms in 175 white and 185 black subjects. We have also estimated the haplotype distribution and assessed associations between these variants. Although the A-2578 and A-1154 variants were more common in whites (39% and 29%, respectively) than in blacks (29% and 16%, respectively; both p < 0.05), no significant interethnic differences were found with regards to the G-634C polymorphism. While the haplotype including the C-2578, G-1154, and G-634 variants was the most common in both ethnic groups, it was more common in blacks than in whites (p < 0.05). The haplotype including the C-2578, A-1154, and G-634 alleles and the haplotype including the C-2578, A-1154, and C-634 alleles were more common in whites than in blacks (both p < 0.05). These results show marked interethnic differences in the distribution of genetic variants of VEGF that may explain, at least in part, interethnic disparities in the susceptibility to cardiovascular diseases.
Resumo:
Background: MicroRNAs (miRNAs) are short non-coding RNAs that inhibit translation of target genes by binding to their mRNAs. The expression of numerous brain-specific miRNAs with a high degree of temporal and spatial specificity suggests that miRNAs play an important role in gene regulation in health and disease. Here we investigate the time course gene expression profile of miR-1, -16, and -206 in mouse dorsal root ganglion (DRG), and spinal cord dorsal horn under inflammatory and neuropathic pain conditions as well as following acute noxious stimulation. Results: Quantitative real-time polymerase chain reaction analyses showed that the mature form of miR-1, -16 and -206, is expressed in DRG and the dorsal horn of the spinal cord. Moreover, CFA-induced inflammation significantly reduced miRs-1 and -16 expression in DRG whereas miR-206 was downregulated in a time dependent manner. Conversely, in the spinal dorsal horn all three miRNAs monitored were upregulated. After sciatic nerve partial ligation, miR-1 and -206 were downregulated in DRG with no change in the spinal dorsal horn. On the other hand, axotomy increases the relative expression of miR-1, -16, and 206 in a time-dependent fashion while in the dorsal horn there was a significant downregulation of miR-1. Acute noxious stimulation with capsaicin also increased the expression of miR-1 and -16 in DRG cells but, on the other hand, in the spinal dorsal horn only a high dose of capsaicin was able to downregulate miR-206 expression. Conclusions: Our results indicate that miRNAs may participate in the regulatory mechanisms of genes associated with the pathophysiology of chronic pain as well as the nociceptive processing following acute noxious stimulation. We found substantial evidence that miRNAs are differentially regulated in DRG and the dorsal horn of the spinal cord under different pain states. Therefore, miRNA expression in the nociceptive system shows not only temporal and spatial specificity but is also stimulus-dependent.
Resumo:
Background: While microRNAs (miRNAs) play important roles in tissue differentiation and in maintaining basal physiology, little is known about the miRNA expression levels in stomach tissue. Alterations in the miRNA profile can lead to cell deregulation, which can induce neoplasia. Methodology/Principal Findings: A small RNA library of stomach tissue was sequenced using high-throughput SOLiD sequencing technology. We obtained 261,274 quality reads with perfect matches to the human miRnome, and 42% of known miRNAs were identified. Digital Gene Expression profiling (DGE) was performed based on read abundance and showed that fifteen miRNAs were highly expressed in gastric tissue. Subsequently, the expression of these miRNAs was validated in 10 healthy individuals by RT-PCR showed a significant correlation of 83.97% (P<0.05). Six miRNAs showed a low variable pattern of expression (miR-29b, miR-29c, miR-19b, miR-31, miR-148a, miR-451) and could be considered part of the expression pattern of the healthy gastric tissue. Conclusions/Significance: This study aimed to validate normal miRNA profiles of human gastric tissue to establish a reference profile for healthy individuals. Determining the regulatory processes acting in the stomach will be important in the fight against gastric cancer, which is the second-leading cause of cancer mortality worldwide.
Resumo:
Background: To test if the expression of Smad1-8 mRNAs were predictive of survival in patients with oral squamous cell carcinoma (SCC). Patients and Methods: We analyzed, prospectively, the expression of Smad1-8, by means of Ribonuclease Protection Assay in 48 primary, operable, oral SCC. In addition, 21 larynx, 10 oropharynx and 4 hypopharynx SCC and 65 matched adjacent mucosa, available for study, were also included. For survival analysis, patients were categorized as positive or negative for each Smad, according to median mRNA expression. We also performed real-time quantitative PCR (QRTPCR) to asses the pattern of TGF beta 1, TGF beta 2, TGF beta 3 in oral SCC. Results: Our results showed that Smad2 and Smad6 mRNA expression were both associated with survival in Oral SCC patients. Cox Multivariate analysis revealed that Smad6 positivity and Smad2 negativity were both predictive of good prognosis for oral SCC patients, independent of lymph nodal status (P = 0.003 and P = 0.029, respectively). In addition, simultaneously Smad2(-) and Smad6(+) oral SCC group of patients did not reach median overall survival (mOS) whereas the mOS of Smad2(+)/Smad6(-) subgroup was 11.6 months (P = 0.004, univariate analysis). Regarding to TGF beta isoforms, we found that Smad2 mRNA and TGF beta 1 mRNA were inversely correlated (p = 0.05, R = -0.33), and that seven of the eight TGF beta 1(+) patients were Smad2(-). In larynx SCC, Smad7(-) patients did not reach mOS whereas mOS of Smad7(+) patients were only 7.0 months (P = 0.04). No other correlations were found among Smad expression, clinico-pathological characteristics and survival in oral, larynx, hypopharynx, oropharynx or the entire head and neck SCC population. Conclusion: Smad6 together with Smad2 may be prognostic factors, independent of nodal status in oral SCC after curative resection. The underlying mechanism which involves aberrant TGF beta signaling should be better clarified in the future.
Resumo:
Background: Without intensive selection, the majority of bovine oocytes submitted to in vitro embryo production (IVP) fail to develop to the blastocyst stage. This is attributed partly to their maturation status and competences. Using the Affymetrix GeneChip Bovine Genome Array, global mRNA expression analysis of immature (GV) and in vitro matured (IVM) bovine oocytes was carried out to characterize the transcriptome of bovine oocytes and then use a variety of approaches to determine whether the observed transcriptional changes during IVM was real or an artifact of the techniques used during analysis. Results: 8489 transcripts were detected across the two oocyte groups, of which similar to 25.0% (2117 transcripts) were differentially expressed (p < 0.001); corresponding to 589 over-expressed and 1528 under-expressed transcripts in the IVM oocytes compared to their immature counterparts. Over expression of transcripts by IVM oocytes is particularly interesting, therefore, a variety of approaches were employed to determine whether the observed transcriptional changes during IVM were real or an artifact of the techniques used during analysis, including the analysis of transcript abundance in oocytes in vitro matured in the presence of a-amanitin. Subsets of the differentially expressed genes were also validated by quantitative real-time PCR (qPCR) and the gene expression data was classified according to gene ontology and pathway enrichment. Numerous cell cycle linked (CDC2, CDK5, CDK8, HSPA2, MAPK14, TXNL4B), molecular transport (STX5, STX17, SEC22A, SEC22B), and differentiation (NACA) related genes were found to be among the several over-expressed transcripts in GV oocytes compared to the matured counterparts, while ANXA1, PLAU, STC1and LUM were among the over-expressed genes after oocyte maturation. Conclusion: Using sequential experiments, we have shown and confirmed transcriptional changes during oocyte maturation. This dataset provides a unique reference resource for studies concerned with the molecular mechanisms controlling oocyte meiotic maturation in cattle, addresses the existing conflicting issue of transcription during meiotic maturation and contributes to the global goal of improving assisted reproductive technology.
Resumo:
Background: Group I introns are found in the nuclear small subunit ribosomal RNA gene (SSU rDNA) of some species of the genus Porphyra (Bangiales, Rhodophyta). Size polymorphisms in group I introns has been interpreted as the result of the degeneration of homing endonuclease genes (HEG) inserted in peripheral loops of intron paired elements. In this study, intron size polymorphisms were characterized for different Porphyra spiralis var. amplifolia (PSA) populations on the Southern Brazilian coast, and were used to infer genetic relationships and genetic structure of these PSA populations, in addition to cox2-3 and rbcL-S regions. Introns of different sizes were tested qualitatively for in vitro self-splicing. Results: Five intron size polymorphisms within 17 haplotypes were obtained from 80 individuals representing eight localities along the distribution of PSA in the Eastern coast of South America. In order to infer genetic structure and genetic relationships of PSA, these polymorphisms and haplotypes were used as markers for pairwise Fst analyses, Mantel's test and median joining network. The five cox2-3 haplotypes and the unique rbcL-S haplotype were used as markers for summary statistics, neutrality tests Tajima's D and Fu's Fs and for median joining network analyses. An event of demographic expansion from a population with low effective number, followed by a pattern of isolation by distance was obtained for PSA populations with the three analyses. In vitro experiments have shown that introns of different lengths were able to self-splice from pre-RNA transcripts. Conclusion: The findings indicated that degenerated HEGs are reminiscent of the presence of a full-length and functional HEG, once fixed for PSA populations. The cline of HEG degeneration determined the pattern of isolation by distance. Analyses with the other markers indicated an event of demographic expansion from a population with low effective number. The different degrees of degeneration of the HEG do not refrain intron self-splicing. To our knowledge, this was the first study to address intraspecific evolutionary history of a nuclear group I intron; to use nuclear, mitochondrial and chloroplast DNA for population level analyses of Porphyra; and intron size polymorphism as a marker for population genetics.
Resumo:
Background: Alternative splicing (AS) is a central mechanism in the generation of genomic complexity and is a major contributor to transcriptome and proteome diversity. Alterations of the splicing process can lead to deregulation of crucial cellular processes and have been associated with a large spectrum of human diseases. Cancer-associated transcripts are potential molecular markers and may contribute to the development of more accurate diagnostic and prognostic methods and also serve as therapeutic targets. Alternative splicing-enriched cDNA libraries have been used to explore the variability generated by alternative splicing. In this study, by combining the use of trapping heteroduplexes and RNA amplification, we developed a powerful approach that enables transcriptome-wide exploration of the AS repertoire for identifying AS variants associated with breast tumor cells modulated by ERBB2 (HER-2/neu) oncogene expression. Results: The human breast cell line (C5.2) and a pool of 5 ERBB2 over-expressing breast tumor samples were used independently for the construction of two AS-enriched libraries. In total, 2,048 partial cDNA sequences were obtained, revealing 214 alternative splicing sequence-enriched tags (ASSETs). A subset with 79 multiple exon ASSETs was compared to public databases and reported 138 different AS events. A high success rate of RT-PCR validation (94.5%) was obtained, and 2 novel AS events were identified. The influence of ERBB2-mediated expression on AS regulation was evaluated by capillary electrophoresis and probe-ligation approaches in two mammary cell lines (Hb4a and C5.2) expressing different levels of ERBB2. The relative expression balance between AS variants from 3 genes was differentially modulated by ERBB2 in this model system. Conclusions: In this study, we presented a method for exploring AS from any RNA source in a transcriptome-wide format, which can be directly easily adapted to next generation sequencers. We identified AS transcripts that were differently modulated by ERBB2-mediated expression and that can be tested as molecular markers for breast cancer. Such a methodology will be useful for completely deciphering the cancer cell transcriptome diversity resulting from AS and for finding more precise molecular markers.