995 resultados para SINGLET OXYGEN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quenching of the electronically-excited, lumophoric state of [Ru(bpy)(3)(2+)(Ph4B-)(2)] by oxygen is studied in a wide variety of neat plasticizers. The Stern-Volmer constant, K-SV, is found to be inversely dependent upon the viscosity of the quenching medium, although the natural lifetime of the electronically excited state of [RU(bPY)(3)(2+)(Ph4B-)(2)] is largely independent of medium. The least viscous of the plasticizers tested, triethyl phosphate, did not, however, produce highly sensitive optical oxygen sensors when used to plasticize [RU(bPY)(3)(2+)(Ph4B-)(2)]-containing cellulose acetate butyrate (CAB) and poly(methyl methacrylate) (PMMA) films, Instead, the compatibility of the polymer-plasticizer combination, as measured by the difference in the values of the solubility parameter of the two, appears to be a major factor in determining the overall oxygen sensitivity of the thin plastic films. For highly compatible polymer-plasticizer combinations, the plasticizer with the lowest viscosity produces films of the highest oxygen sensitivity. This situation arises because in the film the quenching process is partly diffusion-controlled and, as a result, the quenching rate constant is inversely proportional to the effective viscosity of the reaction medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two porphyrins, platinum(II) octaethylporphyrin (Pt-OEP) and palladium(II) octaethylporphyrin (Pd-OEP), are incorporated into a wide variety of different encapsulating matricies and tested as oxygen sensors, The excited state lifetimes of the two porphyrins are quite different, 0.091 ms for Pt-OEP and 0.99 ms for Pd-OEP, and Pt-OEP-based oxygen sensors are found to be much less sensitive than Pd-OEP-based ones to quenching by oxygen, Two major response characteristics of an oxygen sensor are (i) its sensitivity toward oxygen and (ii) its response and recovery times when exposed to an alternating atmosphere of nitrogen and air. The response characteristics of a rang of Pt-OEP, and Pd-OEP-based oxygen sensors were determined using cellulose acetate butyrate (CAB), poly(methyl methacrylate) (PMMA), and PMMA/CAB polymer blends as the encapsulating media. Pt-OEP and Pd-OEP oxygen sensors have better response characteristics (i.e., more sensitive and lower response and recovery times) when CAB is used as the encapsulating medium rather than PMMA. For both Pt-OEP- and Pd-OEP-based oxygen sensors, in either polymer, increasing the level of tributyl phosphate plasticizer improves the response characteristics of the final oxygen-sensitive film. Pt-OEP in different unplasticized PMMA/CAB blended films produced a range of oxygen sensors in which the response characteristics improved with increasing level of CAB present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different luminescent, hydrophillic ruthenium diimine cationic complexes are rendered soluble in the hydrophobic medium of a plasticised polymer through ion-pair coupling with a hydrophobic anion, such as tetraphenyl berate. Based on this approach, a number of different oxygen sensitive films, i.e., luminescent, thin plastic films which respond to oxygen-the latter quenches the luminescence were prepared, using the polymer, cellulose acetate, plasticised with tributylphosphate. Of the resultant thin oxygen sensitive films tested, the one containing the luminescent ion-pair ruthenium (II) tris(4,7-diphenyl-1,IO-phenanthroline) ditetraphenyl berate, [Ru(dpp)(3)(2+)(Ph4B-)(2)], was found to be the most sensitive, and its response characteristics were subsequently studied as a function of plasticiser content, temperature and stability in use, and with age. The major response characteristics, i.e., film sensitivity towards oxygen and response and recovery times, depend very strongly upon the overall level of plasticiser present in film; the film is more sensitive and faster in response and recovery the greater the level of plasticiser employed. Thus, the response of the film towards oxygen can be tuned by varying the level of plasticiser in the film. Film sensitivity towards oxygen is largely independent on temperature, whereas its response and recovery times decrease with increasing temperature (E-a = -10.3+/-0.4 kJ mol(-1)). The sensitivity of a typical luminescent film is very stable when used continuously over a 24-h period, decreases by ca. 20% with age when stored at ambient temperature over a period of 29 days, but very little over the same period of time when stored in the freezer section of a fridge. (C) 1997 Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of two gold compounds incorporated into thin plastic films as luminescence quenching oxygen sensors is described. The films are sensitive both to gaseous oxygen and to oxygen dissolved in nonaqueous media such as ethanol. The luminescence quenching of these sensors by oxygen obeys the Stern-Volmer equation and Stern-Volmer constants of 5.35 x 10(-3) and 0.9 x 10(-3) Torr(-1) are found, respectively, for the two dyes in a polystyrene polymer matrix. The sensitivity of the films is strongly influenced by the nature of the polymer matrix, and greatest sensitivity was found in systems based an the polymers polystyrene or cellulose acetate butyrate. Sensitivity was not found to be temperature dependent though raising the temperature hom 15 to 50 degrees C did result in a slight decrease in emission intensity and a hypsochromic shift in the emission wavelength. The rate of response and recovery of the sensors can be increased either by decreasing film thickness or by increasing the operating temperature. The operational and storage stability of these films is generally good though exposure to light should be avoided as one of the dyes tends to undergo photobleaching probably due to a photoinduced ligand substitution reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general method of preparation of thin-film sensors for O-2, incorporating the dye ion-pair tris(4,7-diphenyl-1,10-phenanthroline) rutheninm(II) ditetraphenylborate, in a variety of different thin film polymer/plasticizer matrices is described, The sensitivity of the sensor depends upon the nature of the polymer matrix and plasticizer, A detailed study of one of these systems utilising the polymer poly(methyl methacrylate), PMMA, is reported. The sensitivity of this O-2 sensor depends markedly upon the plasticizer concentration and is largely independent of temperature (24,5-52.5 degrees C) and age (up to 30 d), When exposed to an alternating atmosphere of O-2 and N-2, a typical oxygen film sensor in PMMA exhibits a 0-90% response and recovery time of 0.4 and 4.5 s, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of a kinetic study of the oxidation of water to oxygen by Ce(IV) ions in different acid media, mediated by anhydrous ruthenium(IV) oxide are described. In an acid medium which is predominantly HClO4 the kinetics are diffusion controlled and first order with respect to both [Ce(IV)] and [RuO2] and exhibit an activation energy of 19 kJ mol-1. In 0.5 mol dm-3 H2SO4 the kinetics are much slower and complex, the rate decreasing with increasing [Ce(III)]. The kinetics of catalysis observed in all the different acid media studied are readily interpreted using an electrochemical model in which the catalyst particles are considered as acting as microelectrodes which mediate electron transfer between a Nernstian reduction reaction (Ce(IV) --> Ce(III)) and an irreversible oxidation reaction (H2O --> 2H+ + 1/2O2). This electrochemical model is used to analyse the complex kinetics observed in 0.5 mol dm-3 H2SO4 and extract mechanistic information concerning the nature of the rate determining step.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of catalysis of a number of new and established heterogeneous O2 catalysts have been studied using Ce(IV) as the oxidant via both the disappearance of the Ce(IV) ions and concomitant appearance of O2. The most active of the catalysts tested utilised a PGM(IV) oxide, usually Ru or Ir, prepared by the Adams method, which appears to generate microcrystalline powders with high surface areas and optimum activities per unit area.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: