982 resultados para SINGLE-CRYSTAL SILICON


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two new azide bridged copper(II) coordination polymer compounds, Cu-7(N-3)(14)(C3H10N2)(C4H13N3)]n (I) and Cu-7(N-3)(14)(C3H10N2)(C5H15N3)(2)](n) (II) where C3H10N2 = 1,2-diaminopropane (1,2-DAP); C4H13N3 = di-ethylenetriamine (DETA); C5H15N3 = N-2-aminoethyl-1,3-propanediamine (AEDAP)] were prepared by employing a room temperature diffusion technique involving three layers. Single crystal studies reveal that both compounds I and II, have similar connectivity forming Cu7 clusters through end-on (EO) bonding of the azide. The Cu-7 clusters are connected through end-to-end (EE) connectivity of the azides forming three-dimensional structures. Magnetic studies confirmed the ferromagnetic interactions within the Cu-7 units and revealed the occurrence of concomitant ferro- and antiferro-magnetic interactions between these clusters. As a result I behaves as a weak-ferromagnet with T-C = 10 K.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of four novel neodymium(III) complexes of the formulation Nd(R-tpy)(O-O)(NO3)(2)] (1-4), where R-tpy is 4'-phenyl-2,2': 6', 2''-terpyridine (Ph-tpy; 1, 2) and 4'-ferrocenyl-2,2': 6', 2''-terpyridine (Fc-tpy; 3, 4); O-O is the conjugate base of acetylacetone (Hacac; 1, 3) or curcumin (Hcurc; 2, 4), are synthesized and characterized. The single crystal structure of 1 shows that the complex is a discrete mononuclear species with the Nd(III) centre in a nine coordinate environment provided by a set of O6N3 donor atoms. Complexes 1 and 3 having the simple acac ligand are prepared as control compounds. Complex 4, possessing an appended ferrocenyl (Fc) and the curcumin moiety, is remarkably photocytotoxic to HeLa and MCF-7 cancer cells in visible light giving respective IC50 values of 0.7 mu M and 2.1 mu M while being significantly less toxic to MCF-10A normal cells (IC50 = 34 mu M) and in the dark (IC50 > 50 mu M). The phenyl appended complex 2, lacking a ferrocenyl moiety, is significantly less toxic to both the cell lines when compared with 4. Complexes 1 and 3, lacking the photoactive curcumin moiety, do not show any apparent toxicity both in light and in the dark. The cell death is apoptotic in nature and is mediated by the light-induced formation of reactive oxygen species (ROS). Fluorescence imaging experiment with HeLa cells reveals mitochondrial accumulation of complex 4 within 4 h of incubation. The complexes bind to calf thymus (ct) DNA with moderate affinity giving K-b values in the range of 10(4)-10(5) M-1. The curcumin complexes 2 and 4 cleave plasmid supercoiled DNA to its nicked circular form in visible light via O-1(2) and (OH)-O-center dot pathways. The presence of the ferrocenyl moiety is likely to be responsible for the enhanced cellular uptake and photocytotoxicity of complex 4. Thus, the mitochondria targeting complex 4, being remarkably cytotoxic in light but non-toxic in the dark and to normal cells, is a potential candidate for photochemotherapeutic applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A dislocation theory of fracture criterion for the mixed dislocation emission and cleavage process in an anisotropic solid is developed in this paper. The complicated cases involving mixed-mode loading are considered here. The explicit formula for dislocations interaction with a semi-infinite crack is obtained. The governing equation for the critical condition of crack cleavage in an anisotropic solid after a number dislocation emissions is established. The effects of elastic anisotropy, crack geometry and load phase angle on the critical energy release rate and the total number of the emitted dislocations at the onset of cleavage are analysed in detail. The analyses revealed that the critical energy release rates can increase to one or two magnitudes larger than the surface energy because of the dislocation emission. It is also found elastic anisotropy and crystal orientation have significant effects on the critical energy release rates. The anisotropic values can be several times the isotropic value in one crack orientation. The values may be as much as 40% less than the isotropic value in another crack orientation and another anisotropy parameter. Then the theory is applied to a fee single crystal. An edge dislocation can emit from the crack tip along the most highly shear stressed slip plane. Crack cleavage can occur along the most highly stressed slip plane after a number of dislocation emissions. Calculation is carried out step by step. Each step we should judge by which slip system is the most highly shear stressed slip system and which slip system has the largest energy release rate. The calculation clearly shows that the crack orientation and the load phase angle have significant effects on the crystal brittle-ductile behaviours.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Micro-indentation test at scales on the order of sub-micron has shown that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. Simultaneously, at micron or sub-micron scale, the material microstructure size also has an important influence on the measured hardness. This kind of effect, such as the crystal grain size effect, thin film thickness effect, etc., is called the geometrical effect by here. In the present research, in order to investigate the size effect and the geometrical effect, the micro-indentation experiments are carried out respectively for single crystal copper and aluminum, for polycrystal aluminum, as well as for a thin film/substrate system, Ti/Si3N4. The size effect and geometrical effect are displayed experimentally. Moreover, using strain gradient plasticity theory, the size effect and the geometrical effect are simulated. Through comparing experimental results with simulation results, length-scale parameter appearing in the strain gradient theory for different cases is predicted. Furthermore, the size effect and the geometrical effect are interpreted using the geometrically necessary dislocation concept and the discrete dislocation theory. Member Price: $0; Non-Member Price: $25.00

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ferromagnetic semiconductor MnxGa1-xSb single crystals were fabricated by Mn-ions implantation, deposition, and the post annealing. Magnetic hysteresis-loops in the MnxGa1-xSb single crystals were obtained at room temperature (300 K). The structure of the ferromagnetic semiconductor MnxGa1-xSb single crystal was analyzed by Xray diffraction. The distribution of carrier concentrations in MnxGa1-xSb was investigated by electrochemical capacitance- voltage profiler. The content of Mn in MnxGa1-xSb varied gradually from x = 0.09 near the surface to x = 0 in the wafer inner analyzed by X-ray diffraction. Electrochemical capacitance-voltage profiler reveals that the concentration of p-type carriers in MnxGa1-xSb is as high as 1 1021 cm-3, indicating that most of the Mn atoms in MnxGa1-xSb take the site of Ga, and play a role of acceptors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interactive pair potential between Al and H is obtained based on the ab initio calculation and the Chen-Mobius 3D lattice inversion formula. By utilizing the pair potentials calculated, the effects of hydrogen on the dislocation emission from crack tip have been studied. The simulated result shows that hydrogen can reduce the cohesive strength for Al single crystal, and then the critical stress intensity factor for partial dislocation emission decreases from 0.11 MPa root m (C-H = 0) to 0.075 MPa root m (C-H=0.72%) and 0.06 MPa root m (C-H = 1.44%). This indicates thar hydrogen can enhance the dislocation emission. The simulation also shows that atoms of hydrogen can gather and turn into small bubbles, resulting in enhancement of the equilibrium vacancy concentration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a nano-moiré fringe multiplication method is proposed, which can be used to measure nano-deformation of single crystal materials. The lattice structure of Si (111) is recorded on a film at a given magnification under a transmission microscope, which acts as a specimen grating. A parallel grating (binary type) on glass or film is selected as a reference grating. A multiplied nano-moiré fringe pattern can be reproduced in a 4f optical filter system with the specimen grating and the prepared reference grating. The successful results illustrate that this method can be used to measure deformation in nanometre scale. The method is especially useful in the measurement of the inhomogeneous displacement field, and can be utilized to characterize nano-mechanical behaviour of materials such as dislocation and atomic bond failure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We recently proposed a strain gradient theory to account for the size dependence of plastic deformation at micron and submicron length scales. The strain gradient theory includes the effects of both rotation gradient and stretch gradient such that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the stretch gradient measures explicitly enter the constitutive relations through the instantaneous tangent modulus. Indentation tests at scales on the order of one micron have shown that measured hardness increases significantly with decreasing indent size. In the present paper, the strain gradient theory is used to model materials undergoing small-scale indentations. A strong effect of including strain gradients in the constitutive description is found with hardness increasing by a factor of two or more over the relevant range behavior. Comparisons with the experimental data for polycrystalline copper and single crystal copper indeed show an approximately linear dependence of the square of the hardness, H 2, on the inverse of the indentation depth, 1/h, I.e., H-2 proportional to 1/h, which provides an important self-consistent check of the strain gradient theory proposed by the authors earlier.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Size-dependent elastic constants are investigated theoretically with reference to a nanoscale single-crystal thin film. A three-dimensional _3D_ model is presented with the relaxation on the surface of the nanofilm taken into consideration. The constitutive relation of the 3D model is derived by using the energy approach, and analytical expressions for the four nonzero elastic constants of the nanofilm are obtained. The size effects of the four elastic constants are then discussed, and the dependence of these elastic constants on the surface relaxation and the ambiguity in the definition of the thickness of the nanofilm are also analyzed. In addition, the elastic moduli of the nanofilm in two kinds of plane problem are obtained and discussed in the case of a special boundary condition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A set of numerical analyses for momentum and heat transfer For a 3 in. (0.075 m) diameter Liquid Encapsulant Czochralski (LEC) growth of single-crystal GaAs with or without all axial magnetic field was carried Out using the finite-element method. The analyses assume a pseudosteady axisymmetric state with laminar floats. Convective and conductive heat transfers. radiative heat transfer between diffuse surfaces and the Navier-Stokes equations for both melt and encapsulant and electric current stream function equations Cor melt and crystal Lire considered together and solved simultaneously. The effect of the thickness of encapsulant. the imposed magnetic field strength as well as the rotation rate of crystal and crucible on the flow and heat transfer were investigated. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mn+ irons were implanted to n-type Ge(1 1 1) single crystal at room temperature with an energy of 100 keV and a dose of 3 x 10(16) cm(-2). Subsequently annealing was performed at 400degreesC for 1 h under flowing nitrogen gas. X-ray diffraction measurements show that as-implanted sample is amorphous and the structure of crystal is restored after annealing. Polycrystalline germanium is formed in annealed sample. There are no new phases found except germanium. The samples surface morphologies indicate that annealed sample has island-like feature while there is no such kind of characteristic in as-implanted sample. The elemental composition of annealed sample was analyzed by Auger electron spectroscopy. It shows that manganese ions are deeply implanted into germanium substrate and the highest manganese atomic concentration is 8% at the depth of 120 nm. The magnetic properties of samples were investigated by an alternating gradient magnetometer. The annealed sample shows ferromagnetic behavior at room temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optimised ultrafast laser ablation can result in almost complete ionisation of the target material and the formation of a high velocity plasma jet. Collisions with the ambient gas behind the shock front cools the material resulting in the formation of mainly spherical, single crystal nanoscale particles in the condensate. This work characterises the nanoscale structures produced by the ultrafast laser interactions in He atmospheres at STP with Ni and Al. High resolution transmission electron microscopy was employed to study the microstructure of the condensates and to classify the production of particles forms as a function of the illumination conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alumina ceramic, Al2O3, presents a challenge to laser micro-structuring due to its neglible linear absorption coefficient in the optical region coupled with its physical properties such as extremely high melting point and high thermal conductivity. In this work, we demonstrate clean micro-structuring of alumina using NIR (λ=775 nm) ultrafast optical pulses with 180 fs duration at 1kHz repetition rate. Sub-picosecond pulses can minimise thermal effects along with collateral damage when processing conditions are optimised, consequently, observed edge quality is excellent in this regime. We present results of changing micro-structure and morphology during ultrafast processing along with measured ablation rates and characteristics of developing surface relief. Initial crystalline phase (alpha Al2O3) is unaltered by femtosecond processing. Multi-pulse ablation threshold fluence Fth, ∼ 1.1 Jcm-2 and at low fluence ∼ 3 Jcm -2, independent of machined depth, there appears to remain a ∼ 2 μm thick rapidly re-melted layer. On the other hand, micro-structuring at high fluence F ∼ 21 Jcm-2 shows no evidence of melting and the machined surface is covered with a fine layer of debris, loosely attached. The nature of debris produced by femtosecond ablation has been investigated and consists mainly of alumina nanoparticles with diameters from 20 nm to 1 micron with average diameter ∼ 300 nm. Electron diffraction shows these particles to be essentially single crystal in nature. By developing a holographic technique, we have demonstrated periodic micrometer level structuring on polished samples of this extremely hard material.