987 resultados para SCANNING-TUNNELING MICROSCOPY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents the results of a study on the hydration of pastes containing calcium hydroxide and either rice husk ash (RHA) or sugar cane bagasse ash (SCBA) in various initial CaO/SiO2 molar ratios. The products of the reactions were characterized by thermal analyses X-ray diffraction, and scanning electron microscopy. In the case of the RHA pastes, the product was composed of CaO-SiO2-H2O (type I C-S-H) or CaO-SiO2-H2O (type II C-S-H) according to the CaO/SiO2 ratio of the mixture. In contrast, in the case of the SBCA pastes, the product was composed primarily of CaO-SiO2-H2O that differed from both the previous types; the product also contained inclusions of calcium aluminate hydrates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rice husk ash (RHA) is used as a silica source for several purposes, among them to obtain metal catalysts, as was done in this work. The catalysts were characterized by chemisorption, physisorption, thermal analyses (TG, DSC), X-ray diffraction, X-ray fluorescence, temperature-programmed reduction and scanning electron microscopy. The catalysts synthesized with different Ni loadings supported on RHA were applied to the reaction of dry reforming of methane. The reaction was tested at three temperatures of catalytic reduction (500, 600 and 700 ºC). All synthesized catalysts were active for the studied reaction, with different H2/CO ratios achieved according to degree of metallic dispersion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerous investigations are dedicated to the research and development of new polymer materials destined for innovation in pharmaceutical forms. The application of these technological resources has allowed the commercialization of new therapeutic systems for modified drug release. This investigation aimed to evaluate the association of modified chondroitin sulfate with an insoluble polymer, Eudragit® RS 30 D, widely available in the pharmaceutical market. Isolated films were prepared by the evaporation process using a Teflon® plate. The aqueous dispersions (4% m/v) of synthetic polymer received the addition of modified chondroitin sulfate at different ratios. The interactions of the polymer chains in the blends were physicochemically characterized by means of Fourier transform infrared spectroscopy, thermal analyses, differential scanning calorimetry, thermogravimetry and scanning electron microscopy combined with hydration and assays in alkaline pH. The results showed appropriate properties of the coating materials for solid oral forms intended for drug deliver in specific environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Micro-mesoporous hybrid materials of ZSM-12/MCM-41 type with different micro- and mesoporosity contributions were prepared by a procedure that uses the desilication of the zeolite in an alkaline medium, followed by recrystallization onto the mesostructure, where the zeolite is used as the silica source in the formation of mesoporous phase. The materials were characterized by X-ray diffraction, nitrogen adsorption-desorption at 77 K, scanning electron microscopy and thermal analysis. The results showed that the methodology utilized is efficient for obtaining hybrid materials of ZSM-12/MCM-41 type with optimized micro-and mesoporosity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AbstractIn this study, the spray drying technique was used to prepare L-ascorbic acid (AA) microparticles encapsulated with galactomannan-an extract from the seeds of the Delonix regia species. The physico-chemical characteristics, antioxidant activity, and encapsulation efficiency of the AA microparticles were evaluated and characterized using thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The free-radical scavenging activity of the AA microparticles was determined at different environmental conditions using DPPH (1,1-diphenyl-2-picryl-hydrazyl). X-ray diffraction measurements demonstrated a loss of crystallinity in AA after the encapsulation process, and a DSC scan also showed the loss of the compound's melting peak. Thermogravimetric analysis showed small differences in the thermal stability of galactomannan before and after the incorporation of AA. The mean diameters of the obtained spherical microspheres were in the range of 1.39 ± 0.77 µm. The encapsulation efficiency of AA microparticles in different environmental conditions varied from 95.40 to 97.92, and the antioxidant activity showed values ranging from 0.487 to 0.550 mg mL-1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SiO2/TiO2 nanostructured composites with three different ratios of Si:Ti were prepared using the sol-gel method. These materials were characterized using energy dispersive X-ray fluorescence, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, photoluminescence, Raman with Fourier transform infrared spectroscopy, and the specific surface area. The band gaps of materials were determined by diffuse reflectance spectra, and the values of 3.20 ± 0.01, 2.92 ± 0.02, and 2.85 ± 0.01 eV were obtained as a result of the proportional increases in the amount of Ti within the composite. The materials exhibit only the anatase (TiO2) crystalline phase and have crystalline domains ranging from 4 to 5 nm. The photodegradation process of methylene blue, royal blue GRL, and golden yellow GL dyes were studied with respect to their contact times, pH variations within the solution, and the variations in the dye concentration of the solution in response to only sunlight. The maximum amount of time for the mineralization of dyes was 90 min. The kinetics of the process follows an apparently first order model, in which the obtained rate constant values were 5.72 × 10-2 min-1 for methylene blue, 6.44 × 10-2min-1 for royal blue GRL, and 1.07 × 10-1min-1 for golden yellow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The obtention of silica and cyclodextrin hybrid materials was accomplished by refluxing them in xylol using citric acid as a binding agent. The materials were characterized by infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, and elemental analysis. Evidence for the docking of cyclodextrins α and γ was substantiated based on the variation in band intensity for groups such as ≡Si-OH. Additional docking evidence includes the displacement of some of the bands that are related to cyclodextrin such as the deformation of the C-H axial bond. The α and γ-CDSi materials were characterized as amorphous compounds. The products obtained in the synthesis showed changes in the decomposition temperatures of their isolated constituents, in which the mass of α and γ-CD docked to the silica surface gave the estimated values of 41% and 47%, respectively. The elemental constituents were shown to be consistent and close to their relative theoretical values. ​Thermogravimetric analysis showed that a reduction in the percentage of the hybrids was proportional to the amount of lost mass. This new material is an improvement over synthesized organosilane materials because the operator and the environment benefit from a less toxic methodology. In addition, the material has several potential applications in complexation systems with cyclodextrin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solid samples containing a Ca2Fe2O5 phase were synthesized using the Pechini method. The samples were characterized using X-ray diffraction, thermogravimetric analysis, differential thermal analysis, X-ray fluorescence, nitrogen adsorption/desorption isotherms, and scanning electron microscopy. The stability of the Ca2Fe2O5 phase was evaluated in the photocatalytic degradation of methylene blue (MB) in aqueous solution in the presence of bubbling gas (air, N2, or CO2). The presence of CO2 is known to suppress MB degradation. After the photocatalytic test, changes were observed in the crystalline phase of all systems. These results suggest the low stability of the Ca2Fe2O5 phase in aqueous systems and the significant effect of CO2 on the photocatalytic activity of the Ca2Fe2O5 phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chemically modified electrodes have been studied to obtain new and better electrochemical sensors. Transparent conductive oxides, such as fluorine-doped tin-oxide (FTO), shows electrical conductivity comparable to metals and are potential candidates for new sensors. In this work, FTO was modified by gold electrodeposition from chlorine-auric acid solution using cyclic voltammetry (CV) technique. A set of different materials were produced, varying the scan number. Scanning electron microscopy and electrochemical impedance spectroscopy were performed for the characterization of electrodes surfaces. From this analysis was possible to observe the resistive, capacitive and difusional aspects from all kind of modified electrodes produced, establishing a relationship between this parameters and the scan number. The electrode with 100 scans of CV presented better characteristics for an electrochemical sensor; it has the lowest global impedance and rising of capacitive behavior (related to electrical double layer formation) at lower frequencies. This electrode was tested for paracetamol and caffeine detection. The results showed a high specificity, decreased oxidation potential (0.58 V and 0.97 Vvs. SCE, for paracetamol and caffeine, respectively) and low detection limits (0.82 and 0.052 µmol L-1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work describes the development of an alternative acetate bath for the electrochemical codeposition of Ni-Cu-Fe electrodes at low pH that is stable for several weeks and produces electrodes with good performance for chlor-alkali electrolysis. Physical characterization of the electrode surface was made using X ray absorption spectroscopy (XAS), scanning electron microscopy (SEM) and energy dispersive analysis (EDX). The evaluation of the material as electrocatalyst for the hydrogen evolution reaction (her) was carried out in brine solution (160 g L-1 NaCl + 150 g L-1 NaOH) at different temperatures through steady-state polarization curves. The Ni-Cu-Fe electrodes obtained with this bath have shown low overpotentials for the her, around 0.150 V at 353 K, and good stability under continuous long-term operation for 260 hours. One positive aspect of this cathode is that the polarization behavior of the material shows only one Tafel slope over the temperature range of 298 - 353 K.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrodes consisting of Pt nanoparticles dispersed on thin films of niobium oxide were prepared onto titanium substrates by a sol-gel method. The physical characterization of these electrodes was carried out by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. The mean size of the Pt particles was found to be 10.7 nm. The general aspects of the electrochemical behavior were studied by cyclic voltammetry in 1 mol L-1 HClO4 aqueous solution. The response of these electrodes in relation to the oxidation of formaldehyde and methanol in acidic media was also studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper industry is constantly looking for new ideas for improving paper products while competition and raw material prices are increasing. Many paper products are pigment coated. Coating layer is the top layer of paper, thus by modifying coating pigment also the paper itself can be altered and value added to the final product. In this thesis, synthesis of new plastic and hybrid pigments and their performance in paper and paperboard coating is reported. Two types of plastic pigments were studied: core-shell latexes and solid beads of maleimide copolymers. Core-shell latexes with partially crosslinked hydrophilic polymer core of poly(n-butyl acrylate-co-methacrylic acid) and a hard hydrophobic polystyrene shell were prepared to improve the optical properties of coated paper. In addition, the effect of different crosslinkers was analyzed and the best overall performance was achieved by the use of ethylene glycol dimethacrylate (EGDMA). Furthermore, the possibility to modify core-shell latex was investigated by introducing a new polymerizable optical brightening agent, 1-[(4-vinylphenoxy)methyl]-4-(2-henylethylenyl)benzene which gave promising results. The prepared core-shell latex pigments performed smoothly also in pilot coating and printing trials. The results demonstrated that by optimizing polymer composition, the optical and surface properties of coated paper can be significantly enhanced. The optimal reaction conditions were established for thermal imidization of poly(styrene-co-maleimide) (SMI) and poly(octadecene-co-maleimide) (OMI) from respective maleic anhydride copolymer precursors and ammonia in a solvent free process. The obtained aqueous dispersions of nanoparticle copolymers exhibited glass transition temperatures (Tg) between 140-170ºC and particle sizes from 50-230 nm. Furthermore, the maleimide copolymers were evaluated in paperboard coating as additional pigments. The maleimide copolymer nanoparticles were partly imbedded into the porous coating structure and therefore the full potential of optical property enhancement for paperboard was not achieved by this method. The possibility to modify maleimide copolymers was also studied. Modifications were carried out via N-substitution by replacing part of the ammonia in the imidization reaction with amines, such as triacetonediamine (TAD), aspartic acid (ASP) and fluorinated amines (2,2,2- trifluoroethylamine, TFEA and 2,2,3,3,4,4,4-heptafluorobuthylamine, HFBA). The obtained functional nanoparticles varied in size between 50-217 nm and their Tg from 150-180ºC. During the coating process the produced plastic pigments exhibited good runnability. No significant improvements were achieved in light stability with TAD modified copolymers whereas nanoparticles modified with aspartic acid and those containing fluorinated groups showed the desired changes in surface properties of the coated paperboard. Finally, reports on preliminary studies with organic-inorganic hybrids are presented. The hybrids prepared by an in situ polymerization reaction consisted of 30 wt% poly(styrene- co-maleimide) (SMI) and high levels of 70 wt% inorganic components of kaolin and/or alumina trihydrate. Scanning Electron Microscopy (SEM) images and characterization by Fourier Transform Infrared Spcetroscopy (FTIR) and X-Ray Diffraction (XRD) revealed that the hybrids had conventional composite structure and inorganic components were covered with precipitated SMI nanoparticles attached to the surface via hydrogen bonding. In paper coating, the hybrids had a beneficial effect on increasing gloss levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aims to evaluate the prognostic value of microscopic parameters of asymptomatic leaves of Clusia hilariana Schltdl. subjected to particulate deposition of iron (2.14 mg cm-2 day-1) for 45 consecutive days. Samples of young and expanded leaves without symptoms were collected and subjected to light and scanning electron microscopy techniques. The height of the epidermal cells on both surfaces of the leaf and the thickness of the hypodermis, the chlorophyll parenchyma, and the leaf blade were measured. Micromorphological injury occurred in the abaxial surface of young leaves and on both surfaces of expanded leaves. Erosion of the epicuticular wax and cuticle rupture were frequent on the adaxial surface, while on the abaxial surface of both leaves there was a loss of sinuosity on the anticlinal wall of the epidermal cells, stomatal deformity and obstruction. Micromorphometric alterations were seen in all leaf tissues except in the height of epidermic cells, probably due to the thick cuticle and prominent cuticular flanges. The highest difference in thickness of the leaf blade was seen in young leaves of plants subjected to SPMFe, indicating greater sensibility to particulate iron in comparison to the expanded leaves. The micromorphological and micromorphometric alterations in the leaf blade of Clusia hilariana Schltdl. showed the prognostic potential of these tools on the evaluation of impacts caused by the deposition of particulate matter, especially in the 'Restinga' natural vegetation, where the exposure is increasing due to the presence of iron ore industry in their surroundings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deep bedding is a swine alternative production, especially in the finishing phase, whose byproduct can be recycled, reducing the environmental impact. The objectives of this study were to characterize the ash coming from the controlled burning of the swine deep bedding (SDBA) based on rice husk, and to evaluate their performance in composites as a partial substitute for Portland cement (PC). To measure the differences between SDBA and rice husk ash (RHA) as a reference, we have characterized: particle size distribution, real specific density, x-ray diffraction, electrical conductivity, scanning electron microscopy, chemical analysis and loss on ignition. Samples were prepared for two experimental series: control, and another one with the partial replacement of 30% of SDBA in relation to the mass of the Portland cement. According to the results obtained for physical and mechanical characterization, the composites with SDBA can be used as a constructive element in the rural construction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sisal fiber is an important agricultural product used in the manufacture of ropes, rugs and also as a reinforcement of polymeric or cement-based composites. However, during the fiber production process a large amount of residues is generated which currently have a low potential for commercial use. The aim of this study is to characterize the agricultural residues by the production and improvement of sisal fiber, called field bush and refugo and verify the potentiality of their use in the reinforcement of cement-based composites. The residues were treated with wet-dry cycles and evaluated using tensile testing of fibers, scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Compatibility with the cement-based matrix was evaluated through the fiber pull-out test and flexural test in composites reinforced with 2 % of sisal residues. The results indicate that the use of treated residue allows the production of composites with good mechanical properties that are superior to the traditional composites reinforced with natural sisal fibers.