966 resultados para SACCHARIDE-BINDING SITE
Resumo:
A family of interferon (IFN) regulatory factors (IRFs) have been shown to play a role in transcription of IFN genes as well as IFN-stimulated genes. We report the identification of a member of the IRF family which we have named IRF-3. The IRF-3 gene is present in a single copy in human genomic DNA. It is expressed constitutively in a variety of tissues and no increase in the relative steady-state levels of IRF-3 mRNA was observed in virus-infected or IFN-treated cells. The IRF-3 gene encodes a 50-kDa protein that binds specifically to the IFN-stimulated response element (ISRE) but not to the IRF-1 binding site PRD-I. Overexpression of IRF-3 stimulates expression of the IFN-stimulated gene 15 (ISG15) promoter, an ISRE-containing promoter. The murine IFNA4 promoter, which can be induced by IRF-1 or viral infection, is not induced by IRF-3. Expression of IRF-3 as a Gal4 fusion protein does not activate expression of a chloramphenicol acetyltransferase reporter gene containing repeats of the Gal4 binding sites, indicating that this protein does not contain the transcription transactivation domain. The high amino acid homology between IRF-3 and ISG factor 3 gamma polypeptide (ISGF3 gamma) and their similar binding properties indicate that, like ISGF3 gamma, IRF-3 may activate transcription by complex formation with other transcriptional factors, possibly members of the Stat family. Identification of this ISRE-binding protein may help us to understand the specificity in the various Stat pathways.
Resumo:
Synaptotagmin (Syt) is an inositol high-polyphosphate series [IHPS inositol 1,3,4,5-tetrakisphosphate (IP4), inositol 1,3,4,5,6-pentakisphosphate, and inositol 1,2,3,4,5,6-hexakisphosphate] binding synaptic vesicle protein. A polyclonal antibody against the C2B domain (anti-Syt-C2B), an IHPS binding site, was produced. The specificity of this antibody to the C2B domain was determined by comparing its ability to inhibit IP4 binding to the C2B domain with that to inhibit the Ca2+/phospholipid binding to the C2A domain. Injection of the anti-Syt-C2B IgG into the squid giant presynapse did not block synaptic release. Coinjection of IP4 and anti-Syt-C2B IgG failed to block transmitter release, while IP4 itself was a powerful synpatic release blocker. Repetitive stimulation to presynaptic fiber injected with anti-Syt-C2B IgG demonstrated a rapid decline of the postsynaptic response amplitude probably due to its block of synaptic vesicle recycling. Electron microscopy of the anti-Syt-C2B-injected presynapse showed a 90% reduction of the numbers of synaptic vesicles. These results, taken together, indicate that the Syt molecule is central, in synaptic vesicle fusion by Ca2+ and its regulation by IHPS, as well as in the recycling of synaptic vesicles.
Resumo:
Cyclic nucleotide-gated (CNG) channels present a unique model for studying the molecular mechanisms of channel gating. We have studied the mechanism of potentiation of expressed rod CNG channels by Ni2+ as a first step toward understanding the channel gating process. Here we report that coordination of Ni2+ between histidine residues (H420) on adjacent channel subunits occurs when the channels are open. Mutation of H420 to lysine completely eliminated the potentiation by Ni2+ but did not markedly alter the apparent cGMP affinity of the channel, indicating that the introduction of positive charge at the Ni(2+)-binding site was not sufficient to produce potentiation. Deletion or mutation of most of the other histidines present in the channel did not diminish potentiation by Ni2+. We studied the role of subunit interactions in Ni2+ potentiation by generating heteromultimeric channels using tandem dimers of the rod CNG channel sequence. Injection of single heterodimers in which one subunit contained H420 and the other did not (wt/H420Q or H420Q/wt) resulted in channels that were not potentiated by Ni2+. However, coinjection of both heterodimers into Xenopus oocytes resulted in channels that exhibited potentiation. The H420 residues probably occurred predominantly in nonadjacent subunits when each heterodimer was injected individually, but, when the two heterodimers were coinjected, the H420 residues could occur in adjacent subunits as well. These results suggest that the mechanism of Ni2+ potentiation involves intersubunit coordination of Ni2+ by H420. Based on the preferential binding of Ni2+ to open channels, we suggest that alignment of H420 residues of neighboring subunits into the Ni(2+)-coordinating position may be associated with channel opening.
Resumo:
We cloned and sequenced the 8767-bp full-length cDNA for the chicken cation-independent mannose-6-phosphate receptor (CI-MPR), of interest because, unlike its mammalian homologs, it does not bind insulin-like growth factor II (IGF-II). The cDNA encodes a protein of 2470 aa that includes a putative signal sequence, an extracytoplasmic domain consisting of 15 homologous repeat sequences, a 23-residue transmembrane sequence, and a 161-residue cytoplasmic sequence. Overall, it shows 60% sequence identity with human and bovine CI-MPR homologs, and all but two of 122 cysteine residues are conserved. However, it shows much less homology in the N-terminal signal sequence, in repeat 11, which is proposed to contain the IGF-II-binding site in mammalian CI-MPR homologs, and in the 14-aa residue segment in the cytoplasmic sequence that has been proposed to mediate G-protein-coupled signal transduction in response to IGF-II binding by the human CI-MPR. Transient expression in COS-7 cells produced a functional CI-MPR which exhibited mannose-6-phosphate-inhibitable binding and mediated endocytosis of recombinant human beta-glucuronidase. Expression of the functional chicken CI-MPR in mice lacking the mammalian CI-MPR should clarify the controversy over the physiological role of the IGF-II-binding site in mammalian CI-MPR homologs.
Resumo:
All transcription terminators for RNA polymerase I (pol I) that have been studied so far, ranging from yeast to humans, require a specific DNA binding protein to cause termination. In yeast, this terminator protein has been identified as Reb1p. We now show that, in addition to the binding site for Reb1p, the yeast pol I terminator also requires the presence of a T-rich region coding for the last 12 nucleotides of the transcript. Reb1p cooperates with this T-rich element, both to pause the polymerase and to effect release of the transcript. These findings have implications for the termination mechanism used by all three nuclear RNA polymerases, since all three are known to pause at this terminator.
Resumo:
To identify proteins that regulate the transcriptional activity of c-Jun, we have used the yeast two-hybrid screen to detect mammalian polypeptides that might interact functionally with the N-terminal segment of c-Jun, a known regulatory region. Among the proteins identified is a short form of Stat3 (designated Stat3 beta). Stat3 beta is missing the 55 C-terminal amino acid residues of the long form (Stat3 alpha) and has 7 additional amino acid residues at its C terminus. In the absence of added cytokines, expression of Stat3 beta (but not Stat3 alpha) in transfected cells activated a promoter containing the interleukin 6 responsive element of the rat alpha 2-macroglobulin gene; coexpression of Stat3 beta and c-Jun led to enhanced cooperative activation of the promoter. Nuclear extracts of cells transfected with a Stat3 beta expression plasmid formed a complex with an oligonucleotide containing a Stat3 binding site, whereas extracts of cells transfected with a Stat3 alpha plasmid did not. We conclude that there is a short form of Stat3 (Stat3 beta), that Stat3 beta is transcriptionally active under conditions where Stat3 alpha is not, and that Stat3 beta and c-Jun are capable of cooperative activation of certain promoters.
Resumo:
Mutation studies have identified a region of the S5-S6 loop of voltage-gated K+ channels (P region) responsible for teraethylammonium (TEA) block and permeation/selectivity properties. We previously modeled a similar region of the Na+ channel as four beta-hairpins with the C strands from each of the domains forming the external vestibule and with charged residues at the beta-turns forming the selectivity filter. However, the K+ channel P region amino acid composition is much more hydrophobic in this area. Here we propose a structural motif for the K+ channel pore based on the following postulates (Kv2.1 numbering). (i) The external TEA binding site is formed by four Tyr-380 residues; P loop residues participating in the internal TEA binding site are four Met-371 and Thr-372 residues. (ii) P regions form extended hairpins with beta-turns in sequence ITMT. (iii) only C ends of hairpins form the inner walls of the pore. (iv) They are extended nonregular strands with backbone carbonyl oxygens of segment VGYGD facing the pore with the conformation BRLRL. (v) Juxtaposition of P loops of the four subunits forms the pore. Fitting the external and internal TEA sites to TEA molecules predicts an hourglass-like pore with the narrowest point (GYG) as wide as 5.5 A, suggesting that selectivity may be achieved by interactions of carbonyls with partially hydrated K+. Other potential cation binding sites also exist in the pore.
Resumo:
A cDNA encoding rat oxidosqualene lanosterol-cyclase [lanosterol synthase; (S)-2,3-epoxysqualene mutase (cyclizing, lanosterol-forming), EC 5.4.99.7] was cloned and sequenced by a combination of PCR amplification, using primers based on internal amino acid sequence of the purified enzyme, and cDNA library screening by oligonucleotide hybridization. An open reading frame of 2199 bp encodes a M(r) 83,321 protein with 733 amino acids. The deduced amino acid sequence of the rat enzyme showed significant homology to the known oxidosqualene cyclases (OSCs) from yeast and plant (39-44% identity) and still retained 17-26% identity to two bacterial squalene cyclases (EC 5.4.99.-). Like other cyclases, the rat enzyme is rich in aromatic amino acids and contains five so-called QW motifs, highly conserved regions with a repetitive beta-strand turn motif. The binding site sequence for the 29-methylidene-2,3-oxidosqualene (29-MOS), a mechanism-based irreversible inhibitor specific for the vertebrate cyclase, is well-conserved in all known OSCs. The hydropathy plot revealed a rather hydrophilic N-terminal region and the absence of a hydrophobic signal peptide. Unexpectedly, this microsomal membrane-associated enzyme showed no clearly delineated transmembrane domain. A full-length cDNA was constructed and subcloned into a pYEUra3 plasmid, selected in Escherichia coli cells, and used to transform the OSC-deficient uracil-auxotrophic SGL9 strain of Saccharomyces cerevisiae. The recombinant rat OSC expressed was efficiently labeled by the mechanism-based inhibitor [3H]29-MOS.
Resumo:
Protein kinase C (PKC) isoenzymes are essential components of cell signaling. In this study, we investigated the regulation of PKC-alpha in murine B16 amelanotic melanoma (B16a) cells by the monohydroxy fatty acids 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] and 13(S)-hydroxyoctadecadienoic acid [13(S)-HODE]. 12(S)-HETE induced a translocation of PKC-alpha to the plasma membrane and focal adhesion plaques, leading to enhanced adhesion of B16a cells to the matrix protein fibronectin. However, 13(S)-HODE inhibited these 12(S)-HETE effects on PKC-alpha. A receptor-mediated mechanism of action for 12(S)-HETE and 13(S)-HODE is supported by the following findings. First, 12(S)-HETE triggered a rapid increase in cellular levels of diacylglycerol and inositol trisphosphate in B16a cells. 13(S)-HODE blocked the 12(S)-HETE-induced bursts of both second messengers. Second, the 12(S)-HETE-increased adhesion of B16a cells to fibronectin was sensitive to inhibition by a phospholipase C inhibitor and pertussis toxin. Finally, a high-affinity binding site (Kd = 1 nM) for 12(S)-HETE was detected in B16a cells, and binding of 12(S)-HETE to B16a cells was effectively inhibited by 13(S)-HODE (IC50 = 4 nM). In summary, our data provide evidence that regulation of PKC-alpha by 12(S)-HETE and 13(S)-HODE may be through a guanine nucleotide-binding protein-linked receptor-mediated hydrolysis of inositol phospholipids.
Resumo:
We have investigated two regions of the viral RNA of human immunodeficiency virus type 1 (HIV-1) as potential targets for antisense oligonucleotides. An oligodeoxynucleotide targeted to the U5 region of the viral genome was shown to block the elongation of cDNA synthesized by HIV-1 reverse transcriptase in vitro. This arrest of reverse transcription was independent of the presence of RNase H activity associated with the reverse transcriptase enzyme. A second oligodeoxynucleotide targeted to a site adjacent to the primer binding site inhibited reverse transcription in an RNase H-dependent manner. These two oligonucleotides were covalently linked to a poly(L-lysine) carrier and tested for their ability to inhibit HIV-1 infection in cell cultures. Both oligonucleotides inhibited virus production in a sequence- and dose-dependent manner. PCR analysis showed that they inhibited proviral DNA synthesis in infected cells. In contrast, an antisense oligonucleotide targeted to the tat sequence did not inhibit proviral DNA synthesis but inhibited viral production at a later step of virus development. These experiments show that antisense oligonucleotides targeted to two regions of HIV-1 viral RNA can inhibit the first step of viral infection--i.e., reverse transcription--and prevent the synthesis of proviral DNA in cell cultures.
Resumo:
Previous studies in transgenic mice and cultured cells have indicated that the major enhancer function for erythroid cell expression of the globin genes is provided by the heterodimeric basic-leucine zipper transcription factor NF-E2. Globin gene expression within cultured mouse erythroleukemia cells is highly dependent on NF-E2. To examine the requirement for this factor in vivo, we used homologous recombination in embryonic stem cells to generate mice lacking the hematopoietic-specific subunit, p45 NF-E2. The most dramatic aspect of the homozygous mutant mice was an absence of circulating platelets, which led to the death of most animals due to hemorrhage. In contrast, the effect of loss of NF-E2 on the erythroid lineage was surprisingly mild. Although neonates exhibited severe anemia and dysmorphic red-cell changes, probably compounded by concomitant bleeding, surviving adults exhibited only mild changes consistent with a small decrease in the hemoglobin content per cell. p45 NF-E2-null mice responded to anemia with compensatory reticulocytosis and splenomegaly. Globin chain synthesis was balanced, and switching from fetal to adult globins progressed normally. Although these findings are consistent with the substitution of NF-E2 function in vivo by one or more compensating proteins, gel shift assays using nuclear extracts from p45 NF-E2-null mice failed to reveal novel complexes formed on an NF-E2 binding site. Thus, regulation of globin gene transcription through NF-E2 binding sites in vivo is more complex than has been previously appreciated.
Resumo:
Glutathione S-transferases (EC 2.5.1.18) in mammalian cells catalyze the conjugation, and thus, the detoxication of a structurally diverse group of electrophilic environmental carcinogens and alkylating drugs, including the antineoplastic nitrogen mustards. We proposed that structural alteration of the nonspecific electrophile-binding site would produce mutant enzymes with increased efficiency for detoxication of a single drug and that these mutants could serve as useful somatic transgenes to protect healthy human cells against single alkylating agents used in cancer chemotherapy protocols. Random mutagenesis of three regions (residues 9-14, 102-112, and 210-220), which together compose the glutathione S-transferase electrophile-binding site, followed by selection of Escherichia coli expressing the enzyme library with the nitrogen mustard mechlorethamine (20-500 microM), yielded mutant enzymes that showed significant improvement in catalytic efficiency for mechlorethamine conjugation (up to 15-fold increase in kcat and up to 6-fold increase in kcat/Km) and that confer up to 31-fold resistance, which is 9-fold greater drug resistance than that conferred by the wild-type enzyme. The results suggest a general strategy for modification of drug- and carcinogen-metabolizing enzymes to achieve desired resistance in both prokaryotic and eukaryotic plant and animal cells.
Resumo:
Most eukaryotic promoters contain multiple binding sites for one or more transcriptional activators that interact in a synergistic manner. A common view is that synergism is a manifestation of the need for many contacts between activators and the general transcription machinery that a single activator presumably cannot fulfill. In this model, various combinations of protein-protein interactions control the level of gene expression. However, we show here that under physiological conditions, a single binding site and presumably GAL4 can activate transcription to the maximum possible level in vivo. Synergistic effects in this natural system are shown to be consistent with cooperative DNA binding. These results point to DNA occupancy as the major element in fine tuning gene expression in the galactose regulon.
Resumo:
Pro-phenol oxidase [pro-PO; zymogen of phenol oxidase (monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1)] is present in the hemolymph plasma of the silkworm Bombyx mori. Pro-PO is a heterodimeric protein synthesized by hemocytes. A specific serine proteinase activates both subunits through a limited proteolysis. The amino acid sequences of both subunits were deduced from their respective cDNAs; amino acid sequence homology between the subunits was 51%. The deduced amino acid sequences revealed domains highly homologous to the copper-binding site sequences (copper-binding sites A and B) of arthropod hemocyanins. The overall sequence homology between silkworm pro-PO and arthropod hemocyanins ranged from 29 to 39%. Phenol oxidases from prokaryotes, fungi, and vertebrates have sequences homologous to only the copper-binding site B of arthropod hemocyanins. Thus, silkworm pro-PO DNA described here appears distinctive and more closely related to arthropod hemocyanins. The pro-PO-activating serine proteinase was shown to hydrolyze peptide bonds at the carboxyl side of arginine in the sequence-Asn-49-Arg-50-Phe-51-Gly-52- of both subunits. Amino groups of N termini of both subunits were indicated to be N-acetylated. The cDNAs of both pro-PO subunits lacked signal peptide sequences. This result supports our contention that mature pro-PO accumulates in the cytoplasm of hemocytes and is released by cell rupture, as for arthropod hemocyanins.
Resumo:
She is a widely expressed adapter protein that plays an important role in signaling via a variety of cell surface receptors and has been implicated in coupling the stimulation of growth factor, cytokine, and antigen receptors to the Ras signaling pathway. She interacts with several tyrosine-phosphorylated receptors through its C-terminal SH2 domain, and one of the mechanisms of T-cell receptor-mediated Ras activation involves the interaction of the Shc SH2 domain with the tyrosine-phosphorylated zeta chain of the T-cell receptor. Here we describe a high-resolution NMR structure of the Shc SH2 domain complexed to a phosphopeptide (GHDGLpYQGLSTATK) corresponding to a portion of the zeta chain of the T-cell receptor. Although the overall architecture of the protein is similar to other SH2 domains, distinct structural differences were observed in the smaller beta-sheet, BG loop, (pY + 3) phosphopeptide-binding site, and relative position of the bound phosphopeptide.