968 resultados para Ryan
Resumo:
Here we consider the numerical optimization of active surface plasmon polariton (SPP) trench waveguides suited for integration with luminescent polymers for use as highly localized SPP source devices in short-scale communication integrated circuits. The numerical analysis of the SPP modes within trench waveguide systems provides detailed information on the mode field components, effective indices, propagation lengths and mode areas. Such trench waveguide systems offer extremely high confinement with propagation on length scales appropriate to local interconnects, along with high efficiency coupling of dipolar emitters to waveguided plasmonic modes which can be close to 80%. The large Purcell factor exhibited in these structures will further lead to faster modulation capabilities along with an increased quantum yield beneficial for the proposed plasmon-emitting diode, a plasmonic analog of the light-emitting diode. The confinement of studied guided modes is on the order of 50 nm and the delay over the shorter 5 μm length scales will be on the order of 0.1 ps for the slowest propagating modes of the system, and significantly less for the faster modes.
Resumo:
A commercial polymeric film (Parafilm M (R), a blend of a hydrocarbon wax and a polyolefin) was evaluated as a model membrane for microneedle (MN) insertion studies. Polymeric MN arrays were inserted into Parafilm M (R) (PF) and also into excised neonatal porcine skin. Parafilm M (R) was folded before the insertions to closely approximate thickness of the excised skin. Insertion depths were evaluated using optical coherence tomography (OCT) using either a force applied by a Texture Analyser or by a group of human volunteers. The obtained insertion depths were, in general, slightly lower, especially for higher forces, for PF than for skin. However, this difference was not a large, being less than the 10% of the needle length. Therefore, all these data indicate that this model membrane could be a good alternative to biological tissue for MN insertion studies. As an alternative method to OCT, light microscopy was used to evaluate the insertion depths of MN in the model membrane. This provided a rapid, simple method to compare different MN formulations. The use of Parafilm M (R), in conjunction with a standardised force/time profile applied by a Texture Analyser, could provide the basis for a rapid MN quality control test suitable for in-process use. It could also be used as a comparative test of insertion efficiency between candidate MN formulations.
Resumo:
A new synthetic protocol for the hydroxymethylation of terminal acetylenes is described that involves stoichiometric Carreira alkynylation with solid paraformaldehyde (HO[CH2O]nH) in PhMe at 60 oC. Significantly, the method can be successfully applied on acetylenes that possess base-sensitive ester functionality and heterocyclic rings that readily undergo metallation. While N-methylephedrine (NME) is generally the best Zn(OTf)2-coordinating ligand for promoting hydroxymethylation, TMEDA can serve as a replacement.
Resumo:
Digital pathology and the adoption of image analysis have grown rapidly in the last few years. This is largely due to the implementation of whole slide scanning, advances in software and computer processing capacity and the increasing importance of tissue-based research for biomarker discovery and stratified medicine. This review sets out the key application areas for digital pathology and image analysis, with a particular focus on research and biomarker discovery. A variety of image analysis applications are reviewed including nuclear morphometry and tissue architecture analysis, but with emphasis on immunohistochemistry and fluorescence analysis of tissue biomarkers. Digital pathology and image analysis have important roles across the drug/companion diagnostic development pipeline including biobanking, molecular pathology, tissue microarray analysis, molecular profiling of tissue and these important developments are reviewed. Underpinning all of these important developments is the need for high quality tissue samples and the impact of pre-analytical variables on tissue research is discussed. This requirement is combined with practical advice on setting up and running a digital pathology laboratory. Finally, we discuss the need to integrate digital image analysis data with epidemiological, clinical and genomic data in order to fully understand the relationship between genotype and phenotype and to drive discovery and the delivery of personalized medicine.
Resumo:
The first Australian palliative care nurse practitioner (NP) was endorsed in 2003. In 2009 the Victoria Department of Health funded the development of the Victorian Palliative Care Nurse Practitioner Collaborative (VPCNPC). Its aim was to promote the NP role, develop resources, and provide education and mentorship to NPs, nurse practitioner candidates (NPCs), and health service managers. Four key objectives were developed: identify the demographic profile of palliative care NPCs in Victoria; develop an education curriculum and practical resources to support the training and education of palliative care NPCs and NPs; provide mentorship to NPs, NPCs, and service managers; and ensure effective communication with all key stakeholders. An NPC survey was also conducted to explore NPC demographics, models of care, the hours of study required for the role, the mentoring process, and education needs. This paper reports on the establishment of the VPCNPC, the steps taken to achieve its objectives, and the results of the survey. The NP role in palliative care in Australia continues to evolve, and the VPCNPC provides a structure and resources to clearly articulate the benefits of the role to nursing and clinical services. The advanced clinical practice role of the nurse practitioner (NP) has been well established in North America for several decades and across a range of specialties (Ryan-Woolley et al, 2007; Poghosyan et al, 2012). The NP role in Australia and the UK is a relatively new initiative that commenced in the early 2000s (Gardner et al, 2009). There are over 1000 NPs across all states and territories of Australia, of whom approximately 130 work in the state of Victoria (Victorian Government Health Information, 2012). Australian NPs work across a range of specialties, including palliative, emergency, older person, renal, cardiac, respiratory, and mental health care. There has been increasing focus nationally and internationally on developing academic programmes specifically for nurses working toward NP status (Gardner et al, 2006). There has been less emphasis on identifying the comprehensive clinical support requirements for NPs and NP candidates (NPCs) to ensure they meet all registration requirements to achieve and/or maintain endorsement, or on articulating the ongoing requirements for NPs once endorsed. Historically in Australia there has been a lack of clarity and limited published evidence on the benefits of the NP role for patients, carers, and health services (Quaglietti et al, 2004; Gardner and Gardner, 2005; Bookbinder et al, 2011; Dyar et al, 2012). An NP is considered to be at the apex of clinical nursing practice. The NP role typically entails comprehensively assessing and managing patients, prescribing medicines, making direct referrals to other specialists and services, and ordering diagnostic investigations (Australian Nursing and Midwifery Council, 2009). All NPs in Australia are required to meet the following generic criteria: be a registered nurse, have completed a Nursing and Midwifery Board of Australia approved postgraduate university Master's (nurse practitioner) degree programme, and be able to demonstrate a minimum of 3 years' experience in an advanced practice role (Nursing and Midwifery Board of Australia, 2011). An NPC in Victoria is a registered nurse employed by a service or organisation to work toward meeting the academic and clinical requirements for national endorsement as an NP. During the period of candidacy, which is of variable duration, NPCs consolidate their competence to work at the advanced practice level of an NP. The candidacy period is a process of learning the new role while engaging with mentors (medical and nursing) and accessing other learning opportunities both within and outside one's organisation to meet the educational requirements. Integral to the NP role is the development of a model of care that is responsive to identified service delivery gaps that can be addressed by the skills, knowledge, and expertise of an NP. These are unique to each individual service. The practice of an Australian NP is guided by national standards (Nursing and Midwifery Board of Australia 2014). It is defined by four overarching standards: clinical, education, research, and leadership. Following the initial endorsement of four Victorian palliative care NPs in 2005, there was a lull in recruitment. The Victoria Department of Health (DH) recognised the potential benefits of NPs for health services, and in 2008 it provided funding for Victorian public health services to scope palliative care NP models of care that could enhance service delivery and patient outcomes. The scoping strategy was effective and led to the appointment of 16 palliative care nurses to NPC positions over the ensuing 3 years. The NPCs work across a broad range of care settings, including inpatient, community, and outpatient in metropolitan, regional, and rural areas of Victoria. At the same time, the DH also funded the Centre for Palliative Care to establish the Victorian Palliative Care Nurse Practitioner Collaborative (VPCNPC) to support the NPs and NPCs. The Centre is a state-wide service that is part of St Vincent's Hospital Melbourne and a collaborative Centre of the University of Melbourne. Its primary function is to provide training and conduct research in palliative care. The purpose of the VPCNPC was to provide support and mentorship and develop resources targeted at palliative care NPs, NPCs, and health service managers. Membership of the VPCNPC is open to all NPs, NPCs, health service managers, and nurses interested in the NP role. The aim of this paper is to describe the development of the VPCNPC, its actions, and the outcomes of these actions.
Resumo:
A microwave (MW)-assisted crosslinking process to prepare hydrogel-forming microneedle (MN) arrays was evaluated. Conventionally, such MN arrays are prepared using processes that includes a thermal crosslinking step. Polymeric MN arrays were prepared using poly(methyl vinyl ether-alt-maleic acid) crosslinked by reaction with poly(ethylene glycol) over 24 h at 80 °C. Polymeric MN arrays were prepared to compare conventional process with the novel MW-assisted crosslinking method. Infrared spectroscopy was used to evaluate the crosslinking degree, evaluating the area of the carbonyl peaks (2000–1500 cm−1). It was shown that, by using the MW-assisted process, MN with a similar crosslinking degree to those prepared conventionally can be obtained in only 45 min. The effects of the crosslinking process on the properties of these materials were also evaluated. For this purpose swelling kinetics, mechanical characterisation, and insertion studies were performed. The results suggest that MN arrays prepared using the MW assisted process had equivalent properties to those prepared conventionally but can be produced 30 times faster. Finally, an in vitro caffeine permeation across excised porcine skin was performed using conventional and MW-prepared MN arrays. The release profiles obtained can be considered equivalent, delivering in both cases 3000–3500 μg of caffeine after 24 h.
Resumo:
Differential emission measures (DEMs) during the impulsive phase of solar flares were constructed using observations from the EUV Variability Experiment (EVE) and the Markov-Chain Monte Carlo method. Emission lines from ions formed over the temperature range log Te = 5.8-7.2 allow the evolution of the DEM to be studied over a wide temperature range at 10 s cadence. The technique was applied to several M- and X-class flares, where impulsive phase EUV emission is observable in the disk-integrated EVE spectra from emission lines formed up to 3-4 MK and we use spatially unresolved EVE observations to infer the thermal structure of the emitting region. For the nine events studied, the DEMs exhibited a two-component distribution during the impulsive phase, a low-temperature component with peak temperature of 1-2 MK, and a broad high-temperature component from 7 to 30 MK. A bimodal high-temperature component is also found for several events, with peaks at 8 and 25 MK during the impulsive phase. The origin of the emission was verified using Atmospheric Imaging Assembly images to be the flare ribbons and footpoints, indicating that the constructed DEMs represent the spatially average thermal structure of the chromospheric flare emission during the impulsive phase.