990 resultados para Ruthenium compounds
Resumo:
The syntheses of the complexes formulated as SnMe2Cl2(Ad)2 (I), SnMe2Cl2(Ado)2 (II), SnMe2Cl2- (9-MeAd)2 (III) [Ad = adenine, Ado = adenosine, 9-MeAd = 9-methyladenine] as well as the more unexpected SnPhCl2(OH)(Ad)2·3H2O (IV) and SnPhCl3(Ado)2 (V) by reaction of SnMe2Cl2 or SnPh2Cl2 with the appropriate bases in methanol is described. 1H NMR studies suggest that coordination is through the N-7 position of the adenine base.
Resumo:
The reaction of 2-chloro-3-methyl-1,4-naphthoquinone (3) with the anion of ethyl cyanoacetate led to a mixture of two epimeric fused-ring cyclopropane compounds, characterised as exo- and endo-1-cyano-1 -ethoxycarbonyl-1a-methyl-1a,7a-dihydro-1H-cyclopropa[b]naphthalene-2,7-dione (8) and (9). Various hydrolysis products of these were prepared and an X-ray crystallographic analysis was carried out on one of them, 1-carbamoyl-1 -carboxy-1a-methyl-1a,7a-dihydro-1H-cyclopropa[b]-naphthalene-2,7-dione (17). The reaction of 2-methyl-1,4-naphthoquinone (1) with ethyl diazoacetate gave a fused pyrazoline derivative, 3-ethoxycarbonyl-4-hydroxy-9a-methyl-1,9a-dihydro-benz[f]indazol-9-one (22), while reaction of 2-methyl-3-nitro-1,4-naphthoquinone (5) with diazomethane led to a fused Δ2-isoxazoline N-oxide, 3a-methyl-3,3a-dihydroisoxazolo[3,4-b]naphthalene-4,9-dione 1-oxide (26).
Resumo:
The first stable homoleptic alkenyls of the early transition metals, MRn, (R = C(Ph)=CMe2; M = Ti, Zr, Hf, n = 4; and M = Cr, n = 3) and the related species (C5H5)2MR2 (M = Ti, Zr) and (C5H5)2Zr(Cl)R have been prepared using appropriate organolithium reagents. Cleavage and insertion reactions are reported for the new compounds.
Resumo:
Two novel, monomeric heteroleptic tin(II) derivatives, [Sn{2-[(Me3Si)2C]C5H4N}R] [R = C6H2Pri3-2,4,6 1 or CH(PPh2)2 2], have been prepared, characterised by multinuclear NMR spectroscopies and their molecular structures determined by single crystal X-ray diffraction. Both compounds were prepared from the corresponding heteroleptic tin(II) chloro-analogue, [Sn{2-[(Me3Si)2C]C5H4N}Cl], and thus demonstrate the utility of this compound as a precursor to further examples of heteroleptic tin(II) derivatives: such compounds are often unstable with respect to ligand redistribution. In each case, the central tin(II) is three-co-ordinate. Crystals of trimeric [{Sn(C6H2Pri3-2,4,6)2}3] 3 were found to undergo a solid state phase transition, which may be ascribed to ordering of the ligand isopropyl groups. At 220 K the unit cell is orthorhombic, space group Pna21, compared with monoclinic, space group P21/c, for the same crystals at 298 K, in which there is an effective tripling of the now b (originally c) axis. This result illustrates the extreme crowding generated by this bulky aryl ligand.
Resumo:
We report the results of first systematic studies of organic adsorption from aqueous solutions onto relatively long single walled carbon nanotubes (four tubes, in initial and oxidised forms). Using molecular dynamics simulations (GROMACS package) we discuss the behaviour of tube-water as well as tube-adsorbate systems, for three different adsorbates (benzene, phenol and paracetamol).
Resumo:
Tannic acid (0.1–1%, w/w) and gallic acid (0.3–1%, w/w) were added to skim milk prior to acidification with GDL. The acid gelation of tannic and gallic acid fortified milk had a faster gelation time in comparison with the control gel without phenolic compounds. The addition of tannic acid and gallic acid (up to 0.8%) to the milk resulted in a higher storage modulus (G′), decrease in the water mobility (T2 time) and had no significant effect on the syneresis index (SI). However, the inclusion of 1% gallic acid resulted in a significant decrease in G′, a significant increase in the SI and a wider T2 distribution. Lowering the temperature of the gels from 30 to 5 °C caused the G′ for the gels with gallic and tannic acid to increase significantly in comparison with the control, possibly due to increased hydrogen bonding in the presence of phenolic compounds
Resumo:
A series of bimetallic ruthenium complexes [{Ru(dppe)Cp*}2(μ-C≡CArC≡C)] featuring diethynylaromatic bridging ligands (Ar = 1,4-phenylene, 1,4-naphthylene, 9,10-anthrylene) have been prepared and some representative molecular structures determined. A combination of UV–vis–NIR and IR spectroelectrochemical methods and density functional theory (DFT) have been used to demonstrate that one-electron oxidation of compounds [{Ru(dppe)Cp*}2(μ-C≡CArC≡C)](HC≡CArC≡CH = 1,4-diethynylbenzene; 1,4-diethynyl-2,5-dimethoxybenzene; 1,4-diethynylnaphthalene; 9,10-diethynylanthracene) yields solutions containing radical cations that exhibit characteristics of both oxidation of the diethynylaromatic portion of the bridge, and a mixed-valence state. The simultaneous population of bridge-oxidized and mixed-valence states is likely related to a number of factors, including orientation of the plane of the aromatic portion of the bridging ligand with respect to the metal d-orbitals of appropriate π-symmetry.