994 resultados para Rocks -- Catalonia -- Sant Feliu de Guíxols
Resumo:
Extensive high-grade polydeformed metamorphic provinces surrounding Archaean cratonic nuclei in the East Antarctic Shield record two tectono-thermal episodes in late Mesoproterozoic and late Neoproterozoic-Cambrian times. In Western Dronning Maud Land, the high-grade Mesoproterozoic Maud Belt is juxtaposed against the Archaean Grunehogna Province and has traditionally been interpreted as a Grenvillian mobile belt that was thermally overprinted during the Early Palaeozoic. Integration of new U-Pb sensitive high-resolution ion microprobe and conventional single zircon and monazite age data, and Ar-Ar data on hornblende and biotite, with thermobarometric calculations on rocks from the H.U. Sverdrupfjella, northern Maud Belt, resulted in a more complex P-T-t evolution than previously assumed. A c. 540?Ma monazite, hosted by an upper ampibolite-facies mineral assemblage defining a regionally dominant top-to-NW shear fabric, provides strong evidence for the penetrative deformation in the area being of Pan-African age and not of Grenvillian age as previously reported. Relics of an eclogite-facies garnet-omphacite assemblage within strain-protected mafic boudins indicate that the peak metamorphic conditions recorded by most rocks in the area (T = 687-758°C, P = 9·4-11·3?kbar) were attained subsequent to decompression from P > 12·9?kbar. By analogy with limited U-Pb single zircon age data and on circumstantial textural grounds, this earlier eclogite-facies metamorphism is ascribed to subduction and accretion around 565?Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions is ascribed to the intrusion of post-orogenic granite at c. 480?Ma. The recognition of extensive Pan-African tectonism in the Maud Belt casts doubts on previous Rodinia reconstructions, in which this belt takes a pivotal position between East Antarctica, the Kalahari Craton and Laurentia. Evidence of late Mesoproterozoic high-grade metamorphism during the formation of the Maud Belt exists in the form of c. 1035?Ma zircon overgrowths that are probably related to relics of granulite-facies metamorphism recorded from other parts of the Maud Belt. The polymetamorphic rocks are largely derived from a c. 1140?Ma volcanic arc and 1072 ± 10?Ma granite.
Resumo:
Apatite fission track (FT) ages and length characteristics of samples obtained from Cambrian to Paleocene-aged sandstones collected along the margin of Nares Strait in Ellesmere Island in the Canadian Arctic Archipelago are dominated by a thermal history related to Paleogene relative plate movements between Greenland and Ellesmere Island. A preliminary inverse FT thermal model for a Cambrian (Archer Fiord Formation) sandstone in the hanging wall of the Rawlings Bay thrust at Cape Lawrence is consistent with Paleocene exhumational cooling, likely as a result of erosion of the thrust. This suggests that thrusting at Cape Lawrence occurred prior to the onset of Eocene compression, likely due to transpression during earlier strikeslip along the strait. Models for samples from volcaniclastic sandstones of the Late Paleocene Pavy Formation (from Cape Back and near Pavy River), and a sandstone from the Late Paleocene Mount Lawson Formation (at Split Lake, near Makinson Inlet) are also consistent with minor burial heating following known periods of basaltic volcanism in Baffin Bay and Davis Strait (c. 61-59 Ma), or related tholeiitic volcanism and intrusive activity (c. 55-54 Ma). Thermal models for samples from sea level dykes from around Smith Sound suggest a period of Late Cretaceous - Paleocene heating prior to final cooling during Paleocene time. These model results imply that Paleocene tectonic movements along Nares Strait were significant, and provide limited support for the former existence of the Wegener Fault. Apatite FT data from central Ellesmere Island suggest however, that cooling there occurred during Early Eocene time (c. 50 Ma), which was likely a result of erosion of thrusts during Eurekan compression. This diachronous cooling suggests that Eurekan deformation was partitioned at discrete intervals across Ellesmere Island, and thus it is likely that displacements along the strait were much less than the 150 km that has been previously suggested for the Wegener Fault.
Resumo:
The Izu-Bonin forearc basement volcanic rocks recovered from Holes 792E and 793B show the same phenocrystic assemblage (i.e., plagioclase, two pyroxenes, and Fe-Ti oxides ±olivine), but they differ in the crystallization sequence and their phenocryst chemistry. All the igneous rocks have suffered low-grade hydrothermal alteration caused by interaction with seawater. As a result, only clinopyroxenes, plagioclases, and oxides have preserved their primary igneous compositions. The Neogene olivine-clinopyroxene diabasic intrusion (Unit II) recovered from Hole 793B differs from the basement basaltic andesites because it lacks Cr-spinels and contains abundant titanomagnetites (Usp38.5-46.4) and uncommon FeO-rich (FeO = 29%) spinels. It displays petrological and geochemical similarities to the Izu Arc volcanoes and, thus, can be considered as related to Izu-Bonin Arc magmatic activity. The titanomagnetites (Usp28.5-33) in the calc-alkaline andesitic fragments of the Oligocene volcaniclastic breccia in Hole 793B (Unit VI) represent an early crystallization phase. The Plagioclase phenocrysts enclosed in these rocks show oscillatory zoning and are less Ca-rich (An78.6-67.8) than the plagioclase phenocrysts of the diabase sill and the basement basaltic andesites. Their clinopyroxenes are Fe-rich augites (Fs ? 19.4; FeO = 12%) and thus, differ significantly from the clinopyroxenes of the Hole 793B arc-tholeiitic igneous rocks. The 30-32 Ma porphyritic, two-pyroxene andesites recovered from Hole 792E are very similar to the andesitic clasts of the Neogene breccia recovered in Hole 793B (Unit VI). Both rocks have the same crystallization sequence, and similar chemistry of the Fe-Ti oxides, clinopyroxenes, and plagioclases: that is, Ti-rich (Usp25.5-30.4) magnetites, Fe-rich augites, and intensely oscillatory zoned plagioclases with bytownitic cores (An86-63) and labradorite rims (An73-68). They display a calc-alkaline differentiation trend (Taylor et al., this volume). So, the basement highly porphyritic andesites recovered at Hole 792E, and the Hole 793B andesitic clasts of Unit VI show the same petrological and geochemical characteristics, which are that of calc-alkaline suites. These Oligocene volcanic rocks represent likely the remnants of the Izu-Bonin normal arc magmatic activity, before the forearc rifting and extension. The crystallization sequence in the basaltic andesites recovered from Hole 793B is olivine-orthopyroxene-clinopyroxene-plagioclase-Fe-Ti oxides, indicating a tholeiitic differentiation trend for these volcanic rocks. Type i is an olivine-and Cr-spinel bearing basaltic andesite whereas Type ii is a porphyritic pyroxene-rich basaltic andesite. The porphyritic plagioclase-rich basaltic andesite (Type iii) is similar, in most respects, to Type ii lavas but contains plagioclase phenocrysts. The last, and least common lava is an aphyric to sparsely phyric andesite (Type iv). Cr-spinels, included either in the olivine pseudomorphs of Type i lavas or in the groundmass of Type ii lavas, are Cr-rich and Mg-rich. In contrast, Cr-spinels included in clinopyroxenes and orthopyroxenes (Types i and ii lavas) show lower Cr* and Mg* ratios and higher aluminium contents. Orthopyroxenes from all rock types are Mg-rich enstatites. Clinopyroxenes display endiopsidic to augitic compositions and are TiO2 and Al2O3 depleted. All the crystals exhibit strong zoning patterns, usually normal, although, reverse zoning patterns are not uncommon. The plagioclases show compositions within the range of An90-64. The Fe-Ti oxides of the groundmass are TiO2-poor (Usp16-17). The Hole 793B basaltic andesites show, like the Site 458 bronzites from the Mariana forearc, intermediate features between arc tholeiites and boninites: (1) Cr-spinel in olivine, (2) presence of Mg-rich bronzite, Ca-Mg-rich clinopyroxenes, and Ca-plagioclase phenocrysts, and (3) transitional trace element depletion and epsioln-Nd ratios between arc tholeiites and boninites. Thus, the forearc magmatism of the Izu-Bonin and Mariana arcs, linked to rifting and extension, is represented by a depleted tholeiitic suite that displays boninitic affinities.
Resumo:
In the southeast of the Bolshoi Lyakhovsky Island there are outcrops of tectonic outliers composed of low-K medium-Ti tholeiitic basic rocks represented by low altered pillow basalts, as well as by their metamorphosed analogs: amphibolites and blueschists. The rocks are depleted in light rare-earth elements and were melted out of a depleted mantle source enriched in Th, Nb, and Zr also contributed to the rock formation. The magma sources were not affected by subduction-related fluids or melts. The rocks were part of the Jurassic South Anyui ocean basin crust. The blueschists are the crust of the same basin submerged beneath the more southern Anyui-Svyatoi Nos arc to depth of 30-40 km. Pressure and temperature of metamorphism suggest a setting of "warm" subduction. Mineral assemblages of the blueschists record time of a collision of the Anyui-Svyatoi Nos island arc and the New Siberian continental block expressed as a counter-clockwise PT trend. The pressure jump during the collision corresponds to heaping of tectonic covers above the zone of convergence 12 km in total thickness. Ocean rocks were thrust upon the margin of the New Siberian continental block in late Late Jurassic - early Early Cretaceous and mark the NW continuation of the South Anyui suture, one of the main tectonic sutures of the Northeastern Asia.
Resumo:
Silicic Fe-Ti-oxide magmatic series was the first recognized in the Sierra Leone axial segment of the Mid-Atlantic Ridge near 6°N. The series consists of intrusive rocks (harzburgites, lherzolites, bronzitites, norites, gabbronorites, hornblende Fe-Ti-oxide gabbronorites and gabbronorite-diorites, quartz diorites, and trondhjemites) and their subvolcanic (ilmenite-hornblende dolerites) and, possibly, volcanic analogues (ilmenite-bearing basalts). Deficit of most incompatible elements in the rocks of the series suggests that parental melts derived from a source that had already been melted. Correspondingly, these melts could not be MORB derivatives. Origin of the series is thought to be related to melting of the hydrated oceanic lithosphere during emplacement of an asthenospheric plume (protuberance on the surface of large asthenospheric lens beneath MAR). Genesis of different melts was supposedly controlled by ascent of a chamber of hot mantle magmas thought this lithosphere in compliance with the zone melting mechanism. Melt acquired fluid components from heated rocks at peripheries of the plume and became enriched in Fe, Ti, Pb, Cu, Zn, and other components mobile in fluids.
Resumo:
Data and observation from Drifting Program Leg 121 and plate-tectonic reconstructions indicate that the Ninetyeast Ridge (Indian Ocean) was derived from the interaction of a deep-seated Dupal hotspot and a nearby spreading-ridge axis. The 5000-km-long ridge, from lat 34°S to lat 10°N, was drilled at three sites during Leg 121. About 178 m of basalt, >38 to >80 Ma, were recovered from a total penetration of ~310 m. Shipboard petrographic and geochemical studies showed that each site has distinctive characteristics. Most of the cored lavas have a tholeiitic basalt composition. Incompatible-element abundanes and ratios show systematic trends, consistent with an origin for the Ninetyeast Ridge lavas by mixing between a depleted component-Indian Ocean mid-ocean ridge basalt-and an enriched component-oceanic-island basalt similar to that observed in the youngest alkalic basalts from the Kerguelen archipelago. Preliminary shore-based trace element abundance and isotopic data are compatible with this hypothesis, although Pb isotopes indicate the involvement of another component. The long-lasting and more or less continuous activity of the Kerguelen-Heard plume (ca. 115 Ma), now located under Heard Island, south of the Southeast Indian Ridge, provides evidence that the source of the Dupal anomaly is deep seated.
Resumo:
During Leg 125, two serpentinite seamounts were drilled in the Mariana and Izu-Ogasawara forearcs. Together with abundant serpentinized peridotites, low-grade metamorphic rocks were recovered from both seamounts. The metamorphic rocks obtained from Hole 778A on Conical Seamount on the Mariana forearc contain common blueschist facies minerals, lawsonite, aragonite, blue amphibole, and sodic pyroxene. Approximate metamorphic conditions of these rocks are 150° to 250° C and 5 to 6 kb. These rocks are considered to have been uplifted by diapirism of serpentinite from a deeper portion within the subduction zone. This discovery presents direct evidence that blueschist facies metamorphism actually takes place within a subduction zone and provides new insight about trench-forearc tectonics. The diagnostic mineral assemblage of the metamorphic rocks from Holes 783A and 784A on Torishima Forearc Seamount, in the Izu-Ogasawara region, is actinolite + prehnite + epidote, with a subassemblage of chlorite + quartz + albite + H2O, which is typical of low-pressure type, prehnite-actinolite facies of Liou et al. (1985). This metamorphism may represent ocean-floor metamorphism within trapped oceanic crust or in-situ metamorphism that occurred at depths beneath the island-arc.
Resumo:
This paper reports results of geological studies carried out during two marine expeditions of R/VAkademik M.A. Lavrent'ev (Cruises 37 and 41) in 2005 and 2006 at the underwater Vityaz Ridge. Dredging has yielded various rocks from the basement and sedimentary cover of the ridge within three polygons. On the basis of radioisotope age determinations, petrochemical, and paleontological data all the rocks have been subdivided into the following complexes: volcanic rock of Paleocene, Eocene, Late Oligocene, Middle Miocene, and Pliocene-Pleistocene; volcanogenic-sedimentary rocks of Late Cretaceous - Early Paleocene, Paleogene (undifferentiated), Oligocene - Early Miocene, and Pliocene-Pleistocene. Determinations of age and chemical composition of the rocks have enabled to specify formation conditions of the complexes and to trace geological evolution of the Vityaz Ridge. Presence of young Pliocene-Pleistocene volcanites allows to conclude about the modern tectono-magmatic activity of the central part of the Pacific slope of the Kuril Islands.
Resumo:
Hypabyssal rocks of the Omgon Range, Western Kamchatka that intrude Upper Albian-Lower Campanian deposits of the Eurasian continental margin belong to three coeval (62.5-63.0 Ma) associations: (1) ilmenite gabbro-dolerites, (2) titanomagnetite gabbro-dolerites and quartz microdiorites, and (3) porphyritic biotite granites and granite-aplites. Early Paleocene age of ilmenite gabbro-dolerites and biotite granites was confirmed by zircon and apatite fission-track dating. Ilmenite and titanomagnetite gabbro-dolerites were produced by multilevel fractional crystallization of basaltic melts with, respectively, moderate and high Fe-Ti contents and contamination of these melts with rhyolitic melts of different compositions. Moderate- and high-Fe-Ti basaltic melts were derived from mantle spinel peridotite variably depleted and metasomatized by slab-derived fluid prior to melting. The melts were generated at variable depths and different degrees of melting. Biotite granites and granite aplites were produced by combined fractional crystallization of a crustal rhyolitic melt and its contamination with terrigenous rocks of the Omgon Group. The rhyolitic melts were likely derived from metabasaltic rocks of suprasubduction nature. Early Paleocene hypabyssal rocks of the Omgon Range were demonstrated to have been formed in an extensional environment, which dominated in the margin of the Eurasian continent from Late Cretaceous throughout Early Paleocene. Extension in the Western Kamchatka segment preceded the origin of the Western Koryakian-Kamchatka (Kinkil') continental-margin volcanic belt in Eocene time. This research was conducted based on original geological, mineralogical, geochemical, and isotopic (Rb-Sr) data obtained by the authors.