984 resultados para Roads, Brick
Resumo:
Moisture sensitivity of Hot Mix Asphalt (HMA) mixtures, generally called stripping, is a major form of distress in asphalt concrete pavement. It is characterized by the loss of adhesive bond between the asphalt binder and the aggregate (a failure of the bonding of the binder to the aggregate) or by a softening of the cohesive bonds within the asphalt binder (a failure within the binder itself), both of which are due to the action of loading under traffic in the presence of moisture. The evaluation of HMA moisture sensitivity has been divided into two categories: visual inspection test and mechanical test. However, most of them have been developed in pre-Superpave mix design. This research was undertaken to develop a protocol for evaluating the moisture sensitivity potential of HMA mixtures using the Nottingham Asphalt Tester (NAT). The mechanisms of HMA moisture sensitivity were reviewed and the test protocols using the NAT were developed. Different types of blends as moisture-sensitive groups and non-moisture-sensitive groups were used to evaluate the potential of the proposed test. The test results were analyzed with three parameters based on performance character: the retained flow number depending on critical permanent deformation failure (RFNP), the retained flow number depending on cohesion failure (RFNC), and energy ratio (ER). Analysis based on energy ratio of elastic strain (EREE ) at flow number of cohesion failure (FNC) has higher potential to evaluate the HMA moisture sensitivity than other parameters. If the measurement error in data-acquisition process is removed, analyses based on RFNP and RFNC would also have high potential to evaluate the HMA moisture sensitivity. The vacuum pressure saturation used in AASHTO T 283 and proposed test has a risk to damage specimen before the load applying.
Resumo:
It is commonly regarded that the overuse of traffic control devices desensitizes drivers and leads to disrespect, especially for low-volume secondary roads with limited enforcement. The maintenance of traffic signs is also a tort liability concern, exacerbated by unnecessary signs. The Federal Highway Administration’s (FHWA) Manual on Uniform Traffic Control Devices (MUTCD) and the Institute of Transportation Engineer’s (ITE) Traffic Control Devices Handbook provide guidance for the implementation of STOP signs based on expected compliance with right-of-way rules, provision of through traffic flow, context (proximity to other controlled intersections), speed, sight distance, and crash history. The approach(es) to stop is left to engineering judgment and is usually dependent on traffic volume or functional class/continuity of system. Although presently being considered by the National Committee on Traffic Control Devices, traffic volume itself is not given as a criterion for implementation in the MUTCD. STOP signs have been installed at many locations for various reasons which no longer (or perhaps never) met engineering needs. If in fact the presence of STOP signs does not increase safety, removal should be considered. To date, however, no guidance exists for the removal of STOP signs at two-way stop-controlled intersections. The scope of this research is ultra-low-volume (< 150 daily entering vehicles) unpaved intersections in rural agricultural areas of Iowa, where each of the 99 counties may have as many as 300 or more STOP sign pairs. Overall safety performance is examined as a function of a county excessive use factor, developed specifically for this study and based on various volume ranges and terrain as a proxy for sight distance. Four conclusions are supported: (1) there is no statistical difference in the safety performance of ultra-low-volume stop-controlled and uncontrolled intersections for all drivers or for younger and older drivers (although interestingly, older drivers are underrepresented at both types of intersections); (2) compliance with stop control (as indicated by crash performance) does not appear to be affected by the use or excessive use of STOP signs, even when adjusted for volume and a sight distance proxy; (3) crash performance does not appear to be improved by the liberal use of stop control; (4) safety performance of uncontrolled intersections appears to decline relative to stop-controlled intersections above about 150 daily entering vehicles. Subject to adequate sight distance, traffic professionals may wish to consider removal of control below this threshold. The report concludes with a section on methods and legal considerations for safe removal of stop control.
Resumo:
Newsletter updating the corridor study of the Mississippi Bridge project for the states of Iowa and Illinois.
Resumo:
A report of Iowa's top 5 percent of locations with the most severe safety needs, as required by the most recent federal highway reauthorization bill.
Resumo:
The Seedling Mile in Linn County, Iowa, was part of the Lincoln Highway Association’s so-called “object lesson” program that sought to graphically demonstrate, in the paving of selected one-mile demonstration sections, the benefits of concrete paving to improving road travel across the nation. Constructed in 1918-19, this Seedling Mile became much more than an object lesson and served as something of a battleground between two municipalities—Marion and Cedar Rapids—in their struggle over the county seat and their place on the Lincoln Highway. The Seedling Mile eventually became part of a continuously paved section of the Lincoln Highway between Chicago and Cedar Rapids, with the whole of the Lincoln Highway in Iowa paved in some fashion by the 1930s. In 2002, Linn County reconstructed Mt. Vernon Road from the City of Mt. Vernon to the west end of the Seedling Mile impacting the historic road section. An agreement between concerned government agencies resulted in this publication in partial mitigation of the impact to this historic road section under the guidelines of the National Historic Preservation Act.
Resumo:
The Office of Transportation Data, in cooperation with the Federal Highway Administration, prepares this biennial traffic report. This report is used by federal, state, and local governmental agencies in determining highway needs, construction priorities, route location and environmental impact studies, and the application of appropriate design standards. The general public uses this information in determining the amount of traffic that passes a given area as they make their development plans and propose land use changes. The above reflects only a few of the many technical uses for this data.
Resumo:
Highway noise is one of the most pressing of the surface characteristics issues facing the concrete paving industry. This is particularly true in urban areas, where not only is there a higher population density near major thoroughfares, but also a greater volume of commuter traffic (Sandberg and Ejsmont 2002; van Keulen 2004). To help address this issue, the National Concrete Pavement Technology Center (CP Tech Center) at Iowa State University (ISU), Federal Highway Administration (FHWA), American Concrete Pavement Association (ACPA), and other organizations have partnered to conduct a multi-part, seven-year Concrete Pavement Surface Characteristics Project. This document contains the results of Part 1, Task 2, of the ISU-FHWA project, addressing the noise issue by evaluating conventional and innovative concrete pavement noise reduction methods. The first objective of this task was to determine what if any concrete surface textures currently constructed in the United States or Europe were considered quiet, had long-term friction characteristics, could be consistently built, and were cost effective. Any specifications of such concrete textures would be included in this report. The second objective was to determine whether any promising new concrete pavement surfaces to control tire-pavement noise and friction were in the development stage and, if so, what further research was necessary. The final objective was to identify measurement techniques used in the evaluation.
Resumo:
This document was prepared by the Iowa Department of Transportation to inform Iowans of planned investments in the state's transportation system over the next five years.
Resumo:
Load transfer across transverse joints has always been a factor contributing to the useful life of concrete pavements. For many years, round steel dowels have been the conventional load transfer mechanism. Many problems have been associated with the round steel dowels. The most detrimental effect of the steel dowel is corrosion. Repeated loading over time also damages joints. When a dowel is repeatedly loaded over a long period of time, the high bearing stresses found at the top and bottom edge of a bar erode the surrounding concrete. This oblonging creates multiple problems in the joint. Over the past decade, Iowa State University has performed extensive research on new dowel shapes and materials to mitigate the effects of oblonging and corrosion. This report evaluates the bearing stress performance of six different dowel bar types subjected to two different shear load laboratory test methods. The first load test is the AASHTO T253 method. The second procedure is an experimental cantilevered dowel test. The major objective was to investigate and improve the current AASHTO T253 test method for determining the modulus of dowel support, k0. The modified AASHTO test procedure was examined alongside an experimental cantilever dowel test. The modified AASHTO specimens were also subjected to a small-scale fatigue test in order to simulate long-term dowel behavior with respect to concrete joint damage. Loss on ignition tests were also performed on the GFRP dowel specimens to determine the resin content percentage. The study concluded that all of the tested dowel bar shapes and materials were adequate with respect to performance under shear loading. The modified AASHTO method yielded more desirable results than the ones obtained from the cantilever test. The investigators determined that the experimental cantilever test was not a satisfactory test method to replace or verify the AASHTO T253 method.
Resumo:
The 81st General Assembly of the Iowa Legislature, in Section 85 of House File 868, required the Iowa Department of Transportation (DOT) to conduct a study of current Road Use Tax Fund (RUTF)revenues, and projected roadway construction and maintenance needs.
Resumo:
House File 2754, relating to renewable fuel and energy, was enacted on May 30, 2006. The Act established goals and incentives for the use of renewable fuel, including E85 gasoline (85 percent ethanol and 15 percent gasoline). Section 33 of the Act states: Sec. 33. DEPARTMENTAL STUDY – E85 GASOLINE AVAILABILITY. The state department of transportation and the department of natural resources shall cooperate to conduct a study to provide methods to inform persons of the availability of E85 gasoline offered for sale and distribution by retail dealers of motor fuel in this state, including the location of each retail motor fuel site where a retail dealer offers E85 gasoline for sale and distribution. The department's study shall include methods for identifying those locations for the convenience of the traveling public including but not limited to the identification of those locations on roadside signs and on the official Iowa map published pursuant to section 307.14. The departments shall jointly prepare and deliver a report to the governor and general assembly, which includes findings and recommendations, not later than January 10, 2007.
Resumo:
Pursuant to the Code section 307.12(14)the DOT is providing the summary of contracts let from July 1, 2005 to June 20, 2006.
Resumo:
Each winter, the Iowa Department of Transportation (Iowa DOT) maintenance operators are primarily responsible for plowing snow off federal and state roads. Drivers typically work long shifts under treacherous conditions. In addition to properly navigating the vehicle, drivers are required to operate several plowing mechanisms simultaneously, such as plow controls and salt sprayers. However, operators have few opportunities during the year to practice and refine their skills. An ideal training program would provide operators with the opportunity to practice these skills under realistic yet safe conditions, as well as provide basic training to novice or less-experienced operators. Recent technological advancements have made driving simulators a desirable training and research tool. This literature review discusses much of the recent research establishing simulator fidelity and espousing its applicability. Additionally, this report provides a summary of behavioral and eye tracking research involving driving simulators. Other research topics include comparisons between novice and expert drivers’ behavioral patterns, methods for avoiding cybersickness in virtual environments, and a synopsis of current personality measures with respect to job performance and driving performance. This literature review coincides with a study designed to examine the effectiveness of virtual reality snowplow simulator training for current maintenance operators, using the TranSim VS III truck and snowplow simulator recently purchased by the Iowa DOT.
Resumo:
The Highway Division of the Iowa Department of Transportation engages in research and development for two reasons: first, to find workable solutions to the many problems that require more than ordinary, routine investigation; and second, to identify and implement improved engineering and management practices. This report is submitted in compliance with Sections 310.36 and 312.3A, Code of Iowa, which direct the submission of a report of the Secondary Road Research Fund and the Street Research Fund, respectively. It is a report of the status of research and development projects, which were in progress on June 30, 2006; it is also a report on projects completed during the fiscal year beginning July 1, 2005, and ending June 30, 2006.
Resumo:
The 81st General Assembly of the Iowa legislature, in Section 85 of House File 868, required the Iowa Department of Transportation (Iowa DOT) to conduct a study of current Road Use Tax Fund (RUTF) revenues, and projected roadway construction and maintenance needs. With input from Iowa’s cities, counties and other interested groups, the Iowa DOT completed this report for submittal to the legislature.