987 resultados para Rickey, Branch


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A systematic study of electron cyclotron resonance (CR) in two sets of GaAs/Al0.3Ga0.7As modulation-doped quantum-well samples (well widths between 12 and 24 nm) has been carried out in magnetic fields up to 30 T. Polaron CR is the dominant transition in the region of GaAs optical phonons for the set of lightly doped samples, and the results are in good agreement with calculations that include the interaction with interface optical phonons. The results from the heavily doped set are markedly different. At low magnetic fields (below the GaAs reststrahlen region), all three samples exhibit almost identical CR which shows little effect of the polaron interaction due to screening and Pauli-principle effects. Above the GaAs LO-phonon region (B > similar to 23 T), the three samples behave very differently. For the most lightly doped sample (3 x 10(11) cm(-2)) only one transition minimum is observed, which can be explained as screened polaron CR. A sample of intermediate density (6 x 10(11) cm(-2)) shows two lines above 23 T; the higher frequency branch is indistinguishable from the positions of the single line of the low density sample. For the most heavily, doped sample (1.2 x 10(12) cm(-2)) there is no evidence of high frequency resonance, and the strong, single line observed is indistinguishable from the lower branch observed from sample with intermediate doping density. We suggest that the low frequency branch in our experiment is a magnetoplasmon resonance red-shifted by disorder, and the upper branch is single-particle-like screened polaron CR. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

该文评估一类广义Feistel密码(GFC)抵抗差分和线性密码分析的能力:如果轮函数是双射且它的最大差分和线性特征的概率分别是p和q,则16轮GFC的差分和线性特征的概率的上界为p~7和q~7;如果轮函数采用SP结构且是双射,S盒的最大差分和线性特征的概率是pS和qS,P变换的分支数为P_d,则16轮GFC的差分和线性特征的概率的上界为(pS)~(3P_d+1)和(qS)~(3P_d+1)。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

标准约束优化问题的等式或不等式约束之间是逻辑“与”关系,目前已经有很多高效、收敛的优化算法.但是,在实际应用中有很多更一般的约束优化问题,其等式或不等式约束之间不仅包含逻辑“与”关系,而且还包含逻辑“或”关系,现有的针对标准约束优化问题的各种算法不再适用,给出一种新的数学变换方法,把具有逻辑“或”关系的不等式约束转换为一组具有逻辑“与”关系的不等式,并应用到实时单调速率调度算法的可调度性判定充要条件中,把实时系统设计表示成混合布尔型整数规划问题,利用经典的分支定界法求解.实验部分指出了各种方法的优缺点.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the comprehensive interpretation and study of the Neogene fracture system and diapiric structure, it can be concluded that the diapiric structures, high-angle fractures and vertical fissure system are the main gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, northern South China Sea. The Neogene fractures widely developed in the study area may be classed into two groups: NW (NNW)-trending and NE (NNE)-trending. The first group was active in the Late Miocene, while the second one was active since the Pliocene. The NE (NNE)-trending fractures were characterized by lower activity strength and larger scale, and cut through the sediment layers deposited since the Pliocene. Within the top sediment layers, the high-angle fracture and vertical fissure system was developed. The diapiric structures display various types such as a turtle-back-like arch, weak piercing, gas chimney, and fracture (or crack, fissure). On the seismic profile, some diapiric structures show the vertical chimney pathway whose top is narrow and the bottom is wide, where some ones extend horizontally into pocket or flower-shaped structures and formed the seismic reflection chaotic zones. Within the overlying sediment layers of the diapiric structure, the tree branch, flower-shaped high-angle fractures and vertical fissures were developed and became the pathway and migration system of the gas-bearing fluid influx. In the study area, the diapiric structures indicate a high temperature/over pressure system ever developed. Closely associated and abundant bright-spots show the methane-bearing fluid influx migrated vertically or horizontally through the diapiric structures, high-angle fractures and vertical fissures. In the place where the temperature and pressure conditions were favor for the formation of gas hydrate, the hydrate reservoir deposition sub-system was developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以采自陕西杨陵和安塞的2个1年生酸枣幼苗为材料,采用盆栽称重控水法研究了中度和重度土壤干旱胁迫对它们生长和生理特性的影响。结果表明,不同程度的水分胁迫均使2种源酸枣新生侧枝长度受到极显著抑制,其苗高和基径也受到一定程度抑制,同时分别使叶片相对含水量和水分饱和亏有一定程度的降低和升高;2种源酸枣叶片的叶绿素a含量在各水分胁迫均极显著降低,它们的总叶绿素含量也在重度干旱下显著降低;随土壤干旱胁迫时间的延续,2种源酸枣叶片保护酶SOD、CAT、APX活性上下波动,其脯氨酸和可溶性糖含量逐渐升高,而超氧阴离子含量在较低水平下波动,丙二醛含量逐渐降低。杨陵酸枣在土壤水分较好的条件下表现良好,而安塞酸枣则具有更强的适应旱生能力。研究发现,在不同程度的土壤干旱胁迫下,2个种源酸枣的生长均受到一定程度的抑制,但它们均能调节自身的保护酶系统活性和渗透调节物质含量来减轻干旱伤害,维持植物体的正常生理代谢功能,表现出较强的抗旱耐旱能力。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用每木测定的方法,对不同坡位小叶杨林及其林下植被生长情况进行了调查和计算。研究表明,坡下部小叶杨生长状态良好,其平均地径、胸径、枝下高和冠幅等参数都明显优于坡中部和上部,以沟谷地带的小叶杨的生长为基点,则坡下部、中部和上部的小叶杨的树高和胸径生长潜力分别为沟谷地带小叶杨的77.53%,34.88%,31.88%和75.59%,39.51%,33.36%,坡下部种植小叶杨更有利于其稳定生长;小叶杨(+沙棘)混交林,其林分的平均树高、地径、胸径及冠幅等生长参数都明显高于纯小叶杨林,混交小叶杨林比纯小叶杨林有更好的稳定性保水保土功能。通过对不同坡位小叶杨林地生长环境因子的分析表明,各因子对造成不同坡位小叶杨林空间差异的贡献程度和行为不尽相同,土壤含水量、有机质、全N和有效N含量的影响最为显著;土壤速效P和速效K在各土壤剖面的表现基本一致,且坡下>坡中>坡上;而pH与其它因子相比则表现出相反的作用和趋势。通过对营造方式小叶杨林地生长环境因子的分析表明,土壤含水量在0-120 cm土层的影响较为显著,但在120 cm土层以下表现完全相反;混交林地的沙棘对大大调节土壤全P、有效N和速效P含量,对小叶杨林生长环境贡献突出...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

研究了半干旱沙区不同滴灌带埋设深度下紫花苜蓿的生长特性。通过试验研究分析了滴灌带埋设深度对紫花苜蓿植株高度、茎粗、分枝数、根系生长、根系密度和产量等生长特性的影响。采用主成分分析法对不同滴灌带埋设深度的紫花苜蓿等生长特性进行了综合评价。结果表明,滴灌带不同埋设深度对苜蓿各个生育期生长特性指标影响不同。在苗期,埋设深度为10 cm的处理,有利于苜蓿生长。从分枝期起,埋设深度为30 cm的处理优于其它处理;在整个生育期内,不同埋设深度对苜蓿生长特性影响的综合评判结果为:埋深30 cm>埋深20 cm>埋深10 cm>埋深40 cm。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel design of 100GHz-spaced 16channel arrayed-waveguide grating (AWG) based on silica-on-silicon chip is reported.AWG is achieved by adding a Y-branch to the AWG and arranging the input/output channel in a neat row,so the whole configuration can be aligned and packaged using only one fiber-array.This configuration can decrease the device's size,enlarge the minimum radius of curvature,save time on polishing and alignment,and reduce the chip's fabrication cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A systematic study of electron cyclotron resonance (CR) in two sets of GaAs/Al0.3Ga0.7As modulation-doped quantum-well samples (well widths between 12 and 24 nm) has been carried out in magnetic fields up to 30 T. Polaron CR is the dominant transition in the region of GaAs optical phonons for the set of lightly doped samples, and the results are in good agreement with calculations that include the interaction with interface optical phonons. The results from the heavily doped set are markedly different. At low magnetic fields (below the GaAs reststrahlen region), all three samples exhibit almost identical CR which shows little effect of the polaron interaction due to screening and Pauli-principle effects. Above the GaAs LO-phonon region (B > similar to 23 T), the three samples behave very differently. For the most lightly doped sample (3 x 10(11) cm(-2)) only one transition minimum is observed, which can be explained as screened polaron CR. A sample of intermediate density (6 x 10(11) cm(-2)) shows two lines above 23 T; the higher frequency branch is indistinguishable from the positions of the single line of the low density sample. For the most heavily, doped sample (1.2 x 10(12) cm(-2)) there is no evidence of high frequency resonance, and the strong, single line observed is indistinguishable from the lower branch observed from sample with intermediate doping density. We suggest that the low frequency branch in our experiment is a magnetoplasmon resonance red-shifted by disorder, and the upper branch is single-particle-like screened polaron CR. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma in the air is successfully induced by a free-oscillated Nd:YAG laser pulse with a peak power of 10(2-3) W. The initial free electrons for the cascade breakdown process are from the ablated particles from the surface of a heated coal target, likewise induced by the focused laser beam. The laser field compensates the energy loss of the plasma when the corresponding temperature and the images are investigated by fitting the experimental spectra of B-2 Sigma(+) -> X-2 Sigma(+) band of CN radicals in the plasma with the simulated spectra and a 4-frame CCD camera. The electron density is estimated using a simplified Kramer formula. As this interaction occurs in a gas mixture of hydrogen and oxygen, the formation and development of the plasma are weakened or restrained due to the chaining branch reaction in which the OH radicals are accumulated and the laser energy is consumed. Moreover, this laser ignition will initiate the combustion or explosion process of combustible gas and the minimum ignition energy is measured at different initial pressures. The differences in the experimental results compared to those induced by a nanosecond Q-switched laser pulse with a peak power of 10(6-8) W are also discussed. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In present study, the transition of thermocapillary convection from the axisymmetric stationary flow to oscillatory flow in liquid bridges of 5cst silicon oil (aspect ratio 1.0 and 1.6) is investigated in microgravity conditions by the linear instability analysis. The corresponding marginal instability boundary is closely related to the gas/liquid configuration of the liquid bridge noted as volume ratio. With the increasing volume ratio, the marginal instability boundary consists of the increasing branch and the decreasing branch. A gap region exists between the branches where the critical Marangoni number of the corresponding axisymmetric stationary flow increases drastically. Particularly, a unique axisymmetric oscillatory flow (the critical azimuthal wave number is m=0) in the gap region is reported for the liquid bridge of aspect ratio 1.6. Moreover, the energy transfer between the basic state and the disturbance fields of the thermocapillary convection is analyzed at the corresponding critical Marangoni number, which reveals different major sources of the energy transfer for the development of the disturbances in regimes of the increasing branch, the gap region and the decreasing branch, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

大气CO2浓度的增加已经成为不可争议的事实。预计本世纪末大气CO2浓度将增加到约700µmol mol-1。森林年光合产量约占陆地生态系统年光合产量的70%。森林树木是一个巨大的生物碳库,约占全球陆地生物碳库的85%。森林树木对CO2的固定潜力是缓解由大气CO2浓度升高引起的未来全球气候变化问题的决定性因子之一。红桦(Betula albosinensis Burk.)是川西亚高山采伐迹地自然或人工恢复的重要树种。本研究以1a红桦幼苗为模式植物,采用人工模拟的方法,研究CO2浓度升高对不同种内竞争强度(种群水平)下红桦幼苗的生理特征、生长、干物质积累及其分配的影响,探讨在种内竞争生长条件下红桦幼苗的“光合适应机理”与生长特征,为西南亚高山森林生产力对未来全球变化的预测提供重要参考。 本研究的主要结果如下: 1)在种内竞争生长条件下红桦幼苗经过CO2浓度升高熏蒸4个月后,叶片出现“光合适应”现象。与对照相比,低种植密度(28株m-2)和高种植密度(84株m-2)条件下的红桦幼苗净光合速率(A)、气孔导度(gs)、蒸腾速率(E)、表观量子产量(AQY)和羧化速率(CE)显著降低,而水分利用效率(WUE)则显著提高。CO2浓度升高处理的红桦幼苗叶片Rubisco活性、单位叶面积N浓度、叶绿素a、叶绿素b和类胡萝卜素浓度都显著降低。但CO2浓度对红桦幼苗的叶绿素a与叶绿素b的比值没有显著影响。CO2浓度升高显著增加红桦幼苗单位叶面积的非结构性碳水化合物(TNC)浓度,结果是红桦幼苗的比叶面积(SLA,cm2 g-1)显著降低。 2)与对照相比,CO2浓度升高处理的红桦幼苗高、基径、单叶面积和侧枝的相对生长速率(R GR)显著提高,尤其在试验处理的早期。CO2浓度升高既增加单株红桦幼苗总叶片数量又增加单叶面积,结果是单株红桦幼苗的总叶面积比对照显著增加。 3)CO2浓度升高处理显著增加红桦幼苗干物质积累(尤其是细根生物量),改变了红桦幼苗生物量的分配格局。与对照相比,CO2浓度升高处理的红桦幼苗叶重比(LWR)、叶面积比(LAR)、叶根重比(Wl/Wr)和源汇重比(leaf weight to non-leaf weight ratio, Wsource/Wsink)显著下降(高种植密度的LWR除外),而根冠比(R/S)则显著增加。在两种种植密度条件下,CO2浓度升高显著增加红桦幼苗根生物量的分配比率,显著降低叶片的生物量分配比率,对主茎、侧枝以及地上生物量的分配比率不变或约有下降。 总之,长期生长在CO2浓度升高条件下的红桦幼苗光合能力下降,并伴随Rubisco活性、叶N浓度、光合色素浓度的显著降低以及TNC浓度的显著增加。支持树木光合速率下降与Rubisco活性、叶N浓度下降以及TNC浓度增加紧密相关的假设。CO2浓度升高处理红桦幼苗的早期相对生长速率大大高于对照,而后期迅速下降,说明红桦幼苗生物量的显著增加主要归功于CO2浓度升高的早期促进作用和叶面积的显著增加。CO2浓度升高显著增加红桦幼苗根系生物量和根冠比,表明红桦幼苗“额外”固定的C向根系转移。 The steady increae of atmospheric CO2 concentration([CO2])has been inevitable fact. Models predict that the atmospheric [CO2] will increase to about 700µmol mol-1 at the end of the twenty-first century. As trees constitute a majoor carbon reservoir–85% of total plant carbon is found in forest, and their ability to sequester carbon is a key determinant of future global change problems caused by increases in atmospheric CO2. In addition to the role of forests in the global carbon cycle, inceased growth could be of economic benefit, for example, offsetting deleterious effects of climatic changes. Betula albosinensis (Burk.) usually emerges as the pioneer species in initial stage and as constructive species in later stages of forest community succession of mountain forest area, and also is one of important tree species for afforestation in logged area, in southwesten China. In this experinment, Betula albosinensis seedling (one-year-old) was used as the model plant. B. albosinensis seedlings were grown under two all-day [CO2], ambient (about 350 µmol·mol-1) and elevated [CO2] (about 700 µmol·mol-1), and two planting densities of 28 plants per m2 and 84 plants per m2. The objectives were to characterize birch mature leaf photosynthesis, growth, mass accumulation and allocation responses to long-tern elevated growth [CO2] under the influences of neighbouring plants, and to assess whether elevated [CO2] regulated birch mature leaf photosynthetic capacity, in terms of leaf nitrogen concentration (leaf [N]), activity of ribulose bisphosphate carboxygenase (Rubisco), Rubisco photosynthetic efficiency, and total nonstructural carbohydrates (TNC) concentration, and also to provide a strong reference to predict the productivity of subalpine forests under the future global changes. The results are as follows: 1) B.albosinensis seedlings exposed to elevated [CO2] for 120 days, photosynthetic acclimation phenomena occurred. At two planting densities, leaves of birch seedlings grown under elevated [CO2] had lower net photosynthetic rate (A), stomatal conductance (gs), transpiration (E), apparent quantum yield (AQY) and carboxylated efficiency (CE) and higher water use efficiency (WUE), compared to those of B.albosinensis seedlings grown under ambient [CO2]. Based on the leaf area, leaf [N], Rubisco activity and photosynthetic pigments concentrations of B. albosinensis seedlings grown under elevated [CO2] were significantly lower than those grown under ambient [CO2]. The ratio of chlorophyll a to chlorophyll b concentration was not affected by elevated [CO2]. Under elevated [CO2], the TNC concentration per unit leaf area significantly increased, resulting in significant decrease in specific leaf area. Thus leaf photosynthetic capacity of B. albosinensis seedlings would perform worse under rising atmospheric [CO2] and the influences of neighbouring plants. 2) Under elevated [CO2], the relative growth rate (RGR) of B. albosinensis seedlings height, basal diameter, a leaf area and branch length significantly increased, especially at the initial stage of exposure to elevated [CO2], and a leaf area and leaf numbers per B. albosinensis seedling also significantly increased. Thus the total leaf area per B. albosinensis seedling was significantly increased under elevated [CO2]. 3) As the increase of RGR and total leaf area, biomass of B. albosinensis seedling grown elevated [CO2] was higher, compared to that of B.albosinensis seedlings grown at ambient [CO2]. Elevated [CO2] changed the biomass allocation pattern of B. albosinensis seedling. At two planting densities, B. albosinensis seedlings grown elevated [CO2] had lower leaf weight to total weight ratio (LWR), leaf area to total weight ratio (LAR) and leaf weight to non-leaf weight ratio (Wsource/Wsink), but higher root weight to shoot weight ratio (R/S), compared to those of B.albosinensis seedlings grown at ambient [CO2]. Under elevated [CO2], roots biomass to total biomass ratio was signigicantly increased, leaves biomass to total biomass ratio was significantly decreased. The main stem and branch biomass to total biomass ratio were not affected by elevated [CO2]. In conclusion, our results supported the hypothesis that the decline in photosynthetic capacity of C3 plants will appear after long-term exposure to elevated [CO2], accompanying with the significant decrease in Rubisco activity, leaf N concentration, photosynthetic pigments concentration, and significant increase in total non-structural carbohydrates concentration. Our results also have shown that the increase of biomass of B. albosinensis seedlings should be attributed to initial stimulation on RGR and total leaf area resulted from elevated [CO2]. Under elevated [CO2], the extra carbon sequestered by B.albosinensis seedlings transferred into under-ground part because of increase in root biomass and R/S.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

碳水化合物按其存在的形式可分为结构性碳水化合物和非结构性碳水化合物两种。前者主要用于植物体的形态建成;后者是参与植物生命代谢的重要物质。迄今为止,有关CO2浓度升高对植物叶片中的碳水化合物含量的研究较多,而对其它器官中碳水化合物含量以及碳水化合物在植物体内的分配响应研究较少。碳水化合物含量在植物各器官中的变化能够反映光合同化产物在叶和茎、枝和根中的转运情况;碳水化合物的分配与植物的生长模式相关,它的变化会对植物的生长情况产生影响。因此,为全面认识植物生理生化与生长过程对大气CO2浓度升高响应情况,需要对CO2浓度升高条件下植物体内碳水化合物的含量及分配变化进行深入的研究与探讨。本文应用自控、独立、封闭的生长室系统,研究了红桦幼苗根、茎、叶和枝的碳水化合物含量以及分配格局对大气CO2浓度升高(环境CO2浓度+350 µmol·mol-1) 的响应。研究结果表明:1) CO2浓度升高使红桦幼苗叶片中的非结构性碳水化合物含量显著增加。这可能会对光合作用造成反馈抑制,降低光合速率。2) CO2浓度升高使红桦幼苗根、茎和枝中的还原糖、蔗糖、总可溶性糖、淀粉和总的非结构性碳水化合物(TNC) 含量显著增加。说明CO2浓度升高促进了碳水化合物由叶片向枝、茎和根中的运输转移,支持了Finn和Brun的假设。3) 在总的非结构性碳水化合物(TNC) 中,淀粉所占比例最大。同样地,CO2浓度升高使TNC含量增加的部分中,淀粉所占的比例也最大。在叶片、枝、茎和根中淀粉含量增加部分占TNC含量增加部分的91.45%、88.23%、83.23%和82.01%。4) CO2浓度升高使红桦幼苗根、茎、叶和枝内的纤维素含量有增加的趋势,但未达到显著水平。需要进一步研究长期CO2浓度升高下,纤维素含量的响应程度。5) CO2浓度升高使碳水化合物在红桦幼苗体内的分配发生了改变。红桦幼苗体内碳水化合物分配变化的一致趋势是由地上部分向地下部分分配转移。其中,测定的所有碳水化合物均向根中分配增多。同时,CO2浓度升高使红桦幼苗的根冠比显著增大;根系干重显著增加。这些结果支持了Gorissen 和Cotrufo的假设,即碳水化合物向根中分配增多是根冠比增大的主要原因。6) CO2浓度升高使红桦幼苗体内的氮含量显著下降。氮含量的下降可能主要是由生长的加快和TNC (主要是淀粉) 含量的增加对氮的稀释造成的。Carbohydrates found in plants are frequently grouped into two different classes:structural carbohydrates and non-structural carbohydrates. The former mainlyconstruct the plant basic framework, while the latter are essential for plant growth andmetabolism. As yet there is lack of information on the effects of elevated CO2concentration on carbohydrate contents in stem, branch and root of plant, and oncarbohydrate allocation in organs of plant although there have been many reports onthe responses of carbohydrate contents to elevated CO2 concentration in plant foliages.A shift of carbohydrate contents in plant reflects a change in transporting ofphotosynthetic production from leaf to stem, branch and root of plant. The allocationof carbohydrates that is correlated to plant growth patterns affects plant growth. Thus,in order to understand the influences of elevated CO2 on biochemical process,physiological change and plant growth well, the response of carbohydrate contentsand allocation in plant to elevated CO2 should be further investigated. In our study, theeffects of elevated CO2 on carbohydrate contents and their allocation between leaf,stem, branch and root tissue of Betula albosinensis seedlings were determined. Theseedlings were grown in independent and enclosed-top chambers. Chambers werecontrolled to reproduce ambient (CK) and ambient + 350 µmol·mol-1 CO2 (EC)concentration for 1 year. The results here showed that,1) Elevated CO2 significantly increased non-structural carbohydrate contents in leafof red birch seedlings. This will reduce photosynthetic rate.2) Elevated CO2 also significantly increased non-structural carbohydrate contentsin root, stem and branch of red birch seedlings. These findings supported thehypothesis that elevated CO2 accelerated carbohydrates from leaf to branch, stem androot.3) Starch makes up the largest parts of total non-structural carbohydrate. In thesame way, the increase of starch plays a main role in the increase of totalnon-structural carbohydrate under elevated CO2. In leaf, branch, stem and root, theincrements of starch contents comprised 91.45%, 88.23%, 83.23% and 82.01% of theincrements of total non-structural carbohydrate contents.4) Under elevated CO2 the cellulose contents have an increasing tendency in redbirch seedlings. It is needed to investigate the effects of long-term elevated CO2 oncellulose contents in plant.5) There are significant CO2 effects on the allocation of carbohydrate in organs ofred birch seedlings. Under elevated CO2 more carbohydrates were allocated to root.Moreover, CO2 enrichment significantly increased the root to shoot ratio of red birchseedlings and the dry weight of roots. These results supported Gorissen and Cotrufo ‘shypothesis that increase of carbohydrate allocation to root mostly contributed to theincrease of root to shoot ratio.6) Elevated CO2 brought about a reduction in the nitrogen contents of leaf, stem,branch and root. The decline of nitrogen contents under elevated CO2 is mainlycaused by the dilution effects of increasing starch level and growth of red birchseedlings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

植物群落及其环境在干扰后的演替格局和过程的研究,是群落和生态系统动态研究的一个热点。选取青藏高原东缘山原区川西云杉林皆伐后,从草地过渡到灌丛的关键阶段的4 个皆伐迹地(恢复时间为8 a、10 a、16 a 和21 a),研究皆伐及自然恢复过程对林下典型灌木银露梅(Potentilla glabra)和唐古特忍冬(Lonicera tangutica)的生长与繁殖能力的影响以及灌木植物在迹地上的更新情况,分析灌木在不同生境中的适应对策和适应能力的差异,为揭示青藏高原东缘山原区迹地植被从草甸到灌丛演替的过程和特点及促进迹地演替与植被恢复进程提供理论依据和技术支撑。研究主要结论如下:1)皆伐后银露梅生长和繁殖能力显著提高,但对唐古特忍冬的影响不明显。皆伐后银露梅丛基径、高度和各部分生物量都显著增加(P < 0.05),但唐古特忍冬只有叶生物量和地下生物量增加,总生物量和其余构件生物量无显著变化。皆伐后,银露梅的结实数量、结实株数、不结实株数和结实株/不结实株比例显著增加(P < 0.05)。自然恢复过程中,银露梅和唐古特忍冬生长能力以及银露梅的结实量都表现出降低的趋势。随着迹地自然恢复时间的增加,银露梅和唐古特忍冬的基径、高度、丛叶片数和各部分生物量有减少的趋势。银露梅的结实株数增加, 但结实数量减少。2)皆伐对银露梅和唐古特忍冬生物量分配模式影响不一致。原始林和迹地中(除CT85)银露梅的生物量大小关系皆为:地下>茎>侧枝>叶。唐古特忍冬在原始林中的生物量大小关系为:茎>地下部分>侧枝>叶,而皆伐后生物量的分配情况改变,生物量大小关系变为:地下部分>茎>侧枝>叶。随着自然恢复时间的增加,银露梅减少了地下生物量的分配,而唐古特忍冬增加了地下生物量的分配。3)皆伐和恢复时间的增加改变了迹地物种组成,促使阳性乔、灌木在迹地上定居。4 个迹地上共出现了灌木15 种,乔木3 种,没有出现天然云杉和冷杉幼苗。随着恢复时间的增加,迹地上的灌木物种由原始林下的耐阴物种逐步发展为以针刺悬钩子(Rubus pungens)为主的阳性灌木。4)影响灌木幼苗密度和幼树密度的因子不一致。灌木幼苗密度与灌木层盖度显著负相关,与苔藓层盖度显著正相关。幼树密度与草本层盖度正相关,与苔藓层盖度、灌木层盖度和高度负相关。5)研究发现在青藏高原东缘山原区皆伐15~20 a 后,迹地仍以草本植物为主,推测皆伐后至少20 a 以上迹地才可能向灌丛阶段过渡,比高山峡谷地区的演替进程至少推迟了20 a。银露梅和唐古特忍冬在皆伐后自然恢复过程中表现出不同的生长与繁殖策略是由两个物种的生物学特性的差异引起的。银露梅比唐古特忍冬更适应迹地退化环境。促进青藏高原东缘山原林区迹地森林恢复一方面是尽量减少人为活动的破坏,另一方面,可以通过在迹地中播种适当的乡土乔、灌木种子(如白桦、银露梅)等人工措施,以加快演替进程。The succession pattern and process of plant community and their environments is a hot spotin community and ecosystem dynamic study. Four clearcuts were chosen in Rangtang(recovery time of 8 a、10 a、16 a and 21 a), which represented the key stage of thecommunity evolved from grass stage to shrub stage in the eastern margin of theQinghai-Tibetan Plateau. The growth and reproduction of the Potentilla glabra andLonicera tangutica and the natural regeneration of shrub plants in the primary Piceabalfouriana forest and 4 clearcuts were studied to explore how clear cutting andnatural recovery process affected the understory shrub species during the 21 years inthe eastern margin of the Qinghai-Tibetan Plateau. The main results were below.1) The growth and reproduction of P. glabra significantly increased after forestclear cutting.. But it was not so significant as to the L. tangutica. The organismbiomass and total biomass of P. glabra were increased obviously after clear cutting(P< 0.05). But only leaves and underground biomass of L. tangutica increasedsignificantly after clear cutting(P < 0.05). The number of fruit and growth of P. glabraincreased significantly after clear cutting too(P < 0.05). The ramet height, basaldiameter , organism biomass and friut number of P. glabra and L. tangutica reducedas the increase of recovery time.2) The biomass allocation patterns varied between P. glabra and L. tangutica inthe primary forest and clearcuts. The biomass allocation of P. glabra both in primary forest and clearcuts was followed as: underground part > stem > branch > leaves.However, the biomass allocation of L. tangutica had changed after the clear cutting.The biomass allocation of L. tangutica in the primary forest was followed as: stem >underground part > branch > leaves and it was underground part > stem > branch >leave in clearcuts. The biomass allocation of P. glabra and L. tangutica varied amongclearcuts. Aboveground biomass was increased while underground biomass decreasedfor P. glabra with the increase of recovery period. However, the L. tangutica showedthe reverse changing pattern.3) Clear cutting and recovery time had changed the species composition of theclearcuts. There were 15.shruby species and 3 tree species in the four clearcuts. Nospruce and fir seedlings were found. In the early stage after clear cutting, there wereonly understory shrub species from the primary Picea balfouriana forest. The sunnyspecies, especieally Rubus pungens invaded intensly as the increase of recovery time.4) There was a significant negative relationship between density of seedlingswith shrub layer coverage and positive correlation with moss coverage. The saplingshad significantly positive correlation with herb layer coverage and negativecorrelation with moss coverage, shrub layer coverage and height.5)Comparing to studies in Miyalou, a nearby high mountain and canyon area,the secondary sucession in this subalpine plateau areas lagged at least 20 years.P. glabra and L. tangutica showed different growth and reproduction strategies toclear cutting and natural recovery , which may associated with the difference of theirbiological characters. P. glabra was more adaptive to the clear cutting than the L.tangutica. Two suggestions were probably recommended to promote the recoveryprogress in the subalpine plateau areas based on the results of this study. Limitanthropogenic disturbance, and meanwhile sow native tree and shrub seeds inclearcuts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

克隆植物被认为比非克隆植物更宜于利用异质性环境。在复杂的空间异质环境中,克隆植物可能形成了各种有效利用环境异质性的适应对策。对于克隆植物适应机制的研究,前人已做了大量的工作,特别是从形态和生物量分配等方面对简单异质生境下克隆植物的克隆整合和克隆分工进行了详细的研究。本研究以分布广泛的克隆植物东方草莓(Fragaria orientalis)作为研究对象,应用野外调查和实验生态学方法,采用多对比度单资源模型和不同向双资源模型,从形态和生理生态的角度,研究复杂异质生境下克隆植物的整合和分工及其耗益问题,分析不同类型的生境对克隆植物整合和分工的修饰作用,进而探讨克隆植物对异质生境的适应策略。克隆构型和分株种群特征是植物克隆生长及其生态适应对策研究的基本内容。本文通过野外调查,研究在不同光照条件下东方草莓克隆构型、分株种群特征以及点分布格局。结果表明:东方草莓的克隆构型随光照发生相应的变化,低光照下其匍匐茎节间长和分枝角度均增大而分枝强度减小;随光照减弱,东方草莓分株种群的生物量、根冠比和分株种群密度显著降低;不同光照下东方草莓分株均以随机分布为主但不同尺度下有所差异,其分布格局强度依次为旷地<林缘<林下。结合克隆植物对资源的利用对策,探讨了克隆构型和分株种群特征以及分布格局随环境条件变化的生态适应意义。不同生境斑块条件下克隆植物可能采取不同的适应对策。采用盆栽实验,研究不同水分对比度下克隆整合及其生理生态特征,并对单向和交互资源中东方草莓的克隆整合做了对比研究。结果显示:高的水分对比度能够促进东方草莓的克隆整合,并能刺激相连分株增加光合作用,东方草莓体内的氧化—抗氧化系统也II随对比度做出相应的反应。耗-益分析表明胁迫分株的受益是以供给分株的损耗为代价的,但从克隆片段总体来说是受益的。单向资源中东方草莓生长的绝对值高于交互资源,但耗-益分析表明生长于交互资源下东方草莓的克隆整合获益大于生长于单向资源下东方草莓的克隆整合获益。长期生长于特定生境的克隆植物,在进化过程中其克隆整合和克隆分工在对资源异质性的适应策略方面可能有所侧重。采用盆栽实验对来自不同海拔梯度的东方草莓的克隆整合和克隆分工对异质资源的适应对策进行了研究。实验结果表明,来自高海拔的东方草莓可塑性较差。来自两个海拔的东方草莓对切断匍匐茎的表现有所差异,总体上切断匍匐茎对来自高海拔的东方草莓影响更大些。另外,来自高海拔的东方草莓表现出更高的克隆分工。IIIClonal plants are known to be more suitable for the habitats of heterogeneousresources than nonclonal plants, perhaps due to their well developed adaptivestrategies to environmental heterogeneity. Many studies have been done on theadaptive mechanisms of clonal plants, especially on the clonal integration anddivision of labor with morphology and biomass allocation under simpleheterogeneous habitats. Based on field surveys, laboratory experiments, multi-contrastunidirectional resource model and reciprocal resource model, Fragaria orientalis, aRosaceae stoloniferous herb that widely distributes in China, was used to study thisplant’s morphological and physiological responses to complicated heterogeneoushabitats in terms of its clonal integration, division of labor and cost-benefit, as well astheir modifications by different habitats, so as to better understand the adaptivestrategies of clonal plants under heterogeneous environments.Clonal architecture and ramet population characteristics are of the major concernin the studies on growth and adaptive strategies of clonal plants. Clonal architecture,ramet population characteristics and spatial point pattern of F. orientalis underdifferent light intensity were studied with field observations. The results showed that,clonal architecture changed with light availability: Internode-lengths and branchangels of stolons were larger while branch intensities were smaller under lower lightintensity than those under higher light intensity; Biomass of ramet population,root-shoot ratio and density of ramet population decreased significantly with reduce oflight intensity; Under all light intensities, spatial pattern of ramets was mainlyrandomly distributed but it changed with different scales, with pattern intensity as:open space < forest edge < understory. Adaptation significance of the clonal architecture, the ramet population characteristics and the spatial pattern changing withdifferent environments was discussed according to these results.Clonal plants may take different adaptive strategies under different patches. Withpot culture, clonal integration and physiological parameters of F. orientalis underdifferent water contrasts were studied, and clonal integration under unilateralresources and reciprocal resources were also compared. The results suggested that,high water contrast improve the clonal integration of F. orientalis and increase thephotosynthesis of connected ramets. Oxidative and antioxidative system of F.orientalis also responded with changing water contrasts. According to cost-benefitanalysis, the drought-stressed ramets obtained benefits from the connectedwell-watered ramets, and as a whole, the clonal fragment could also get benefits.Growth of F. orientalis in homogeneous resources was better than that inheterogeneous resources, but the whole plant got more benefit through clonalintegration in heterogeneous resources than in homogeneous resources.Pot culture experiments were also used to study the adaptive strategies inutilizing heterogeneous resources by the plant populations from different altitudes.The results showed that, F. orientalis from alpine zones were shorter and lessexpanded with poorer clonal plasticity than those from middle mountains. F.orientalis from two different altitudes showed different responses to stolon severing,and as a whole, stolon severing had more influence on F. orientalis from alpine zones.In addition, F. orientalis from alpine zones exhibited higher division of labor, whichsuggested that clonal plants from different habitats develop their own adaptivemechanisms in their clonal integration and division of labor in response toenvironmental heterogeneity.