976 resultados para Retrograde tracers
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Systemic infection activates the hypothalamic-pituitary-adrenal (HPA) axis, and brainstem catecholamine cells have been shown to contribute to this response. However, recent work also suggests an important role for the central amygdala (CeA). Because direct connections between the CeA and the hypothalamic apex of the HPA axis are minimal, the present study investigated whether the bed nucleus of the stria terminalis (BNST) might act as a relay between them. This was done by using an animal model of acute systemic infection involving intravascular delivery of the proinflammatory cytokine interleukin-1 (IL-1, 1 g/kg). Unilateral ibotenic acid lesions encompassing the ventral BNST significantly reduced both IL-1-induced increases in Fos immunoreactivity in corticotropin-releasing factor (CRF) cells of the hypothalamic paraventricular nucleus (PVN) and corresponding increases in adrenocorticotropic hormone (ACTH) secretion. Similar lesions had no effect on CRF cell responses to physical restraint, suggesting that the effects of BNST lesions were not due to a nonspecific effect on stress responses. In further studies, we examined the functional connections between PVN, BNST, and CeA by combining retrograde tracing with mapping of IL-1-induced increases in Fos in BNST and CeA cells. In the case of the BNST, these studies showed that systemic IL-1 administration recruits ventral BNST cells that project directly to the PVN. In the case of the CeA, the results obtained were consistent with an arrangement whereby lateral CeA cells recruited by systemic IL-1 could regulate the activity of medial CeA cells projecting directly to the BNST. In conclusion, the present findings are consistent with the hypothesis that the BNST acts as a relay between the CeA and PVN, thereby contributing to CeA modulation of hypophysiotropic CRF cell responses to systemic administration of IL-1.
Resumo:
Previous studies have shown that the medial prefrontal cortex can suppress the hypothalamic-pituitary-adrenal axis response to stress. However, this effect appears to vary with the type of stressor. Furthermore, the absence of direct projections between the medial prefrontal cortex and corticotropin-releasing factor cells at the apex of the hypothalamic-pituitary-adrenal axis suggest that other brain regions must act as a relay when this inhibitory mechanism is activated. In the present study, we first established that electrolytic lesions involving the prelimbic and infralimbic medial prefrontal cortex increased plasma adrenocorticotropic hormone levels seen in response to a physical stressor, the systemic delivery of interleukin-1beta. However, medial prefrontal cortex lesions did not alter plasma adrenocorticotropic hormone levels seen in response to a psychological stressor, noise. To identify brain regions that might mediate the effect of medial prefrontal cortex lesions on hypothalamic-pituitary-adrenal axis responses to systemic interleukin-1beta, we next mapped the effects of similar lesions on interleukin-1beta-induced Fos expression in regions previously shown to regulate the hypothalamic-pituitary-adrenal axis response to this stressor. It was found that medial prefrontal cortex lesions reduced the number of Fos-positive cells in the ventral aspect of the bed nucleus of the stria terminalis. However, the final experiment, which involved combining retrograde tracing with Fos immunolabelling, revealed that bed nucleus of the stria terminalis-projecting medial prefrontal cortex neurons were largely separate from medial prefrontal cortex neurons recruited by systemic interleukin-1beta, an outcome that is difficult to reconcile with a simple medial prefrontal cortex-bed nucleus of the stria terminalis-corticotropin-releasing factor cell control circuit.
Resumo:
We studied thalamic projections to the visual cortex in flying foxes, animals that share neural features believed to resemble those present in the brains of early primates. Neurones labeled by injections of fluorescent tracers in striate and extrastriate cortices were charted relative to the architectural boundaries of thalamic nuclei. Three main findings are reported: First, there are parallel lateral geniculate nucleus (LGN) projections to striate and extrastriate cortices. Second, the pulvinar complex is expansive, and contains multiple subdivisions. Third, across the visual thalamus, the location of cells labeled after visual cortex injections changes systematically, with caudal visual areas receiving their strongest projections from the most lateral thalamic nuclei, and rostral areas receiving strong projections from medial nuclei. We identified three architectural layers in the LGN, and three subdivisions of the pulvinar complex. The outer LGN layer contained the largest cells, and had strong projections to the areas V1, V2 and V3. Neurones in the intermediate LGN layer were intermediate in size, and projected to V1 and, less densely, to V2. The layer nearest to the origin of the optic radiation contained the smallest cells, and projected not only to V1, V2 and V3, but also, weakly, to the occipitotemporal area (OT, which is similar to primate middle temporal area) and the occipitoparietal area (OP, a third tier area located near the dorsal midline). V1, V2 and V3 received strong projections from the lateral and intermediate subdivisions of the pulvinar complex, while OP and OT received their main thalamic input from the intermediate and medial subdivisions of the pulvinar complex. These results suggest parallels with the carnivore visual system, and indicate that the restriction of the projections of the large- and intermediatesized LGN layers to V1, observed in present-day primates, evolved from a more generalized mammalian condition. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The Niemann Pick C1 protein localizes to late endosomes and plays a key role in the intracellular transport of cholesterol in mammalian cells. Cholesterol and other lipids accumulate in a lysosomal or late endosomal compartment in cells lacking normal NPC1 function. Other than accumulation of lipids, defects in lysosomal retroendocytosis, sorting of a multifunctional receptor and endosomal movement have also been detected in NPC1 mutant cells. Ncr1p is an ortholog of NPC1 in the budding yeast Saccharomyces cerevisiae. In this study, we show that Ncr1p is a vacuolar membrane protein that transits through the biosynthetic vacuolar protein sorting pathway, and that it can be solubilized by Triton X-100 at 4 degreesC. Using well-established assays, we demonstrate that the absence of Ncr1p had no effect on fluid phase and receptor- mediated endocytosis, biosynthetic delivery to the vacuole, retrograde transport from endosome to Golgi and ubiquitin- and nonubiquitin-dependent multivesicular body sorting. We conclude that Ncr1p does not have an essential role in known endocytic transport pathways in yeast.
Resumo:
Spinal cord injury usually results in permanent paralysis because of lack of regrowth of damaged neurons. Here we demonstrate that adult mice lacking EphA4 (-/-), a molecule essential for correct guidance of spinal cord axons during development, exhibit axonal regeneration and functional recovery after spinal cord hemisection. Anterograde and retrograde tracing showed that axons from multiple pathways, including corticospinal and rubrospinal tracts, crossed the lesion site. EphA4 -/- mice recovered stride length, the ability to walk on and climb a grid, and the ability to grasp with the affected hindpaw within 1-3 months of injury. EphA4 expression was upregulated on astrocytes at the lesion site in wild-type mice, whereas astrocytic gliosis and the glial scar were greatly reduced in lesioned EphA4-/- spinal cords. EphA4 -/- astrocytes failed to respond to the inflammatory cytokines, interferon-gamma or leukemia inhibitory factor, in vitro. Neurons grown on wild-type astrocytes extended shorter neurites than on EphA4 -/- astrocytes, but longer neurites when the astrocyte EphA4 was blocked by monomeric EphrinA5-Fc. Thus, EphA4 regulates two important features of spinal cord injury, axonal inhibition, and astrocytic gliosis.
Resumo:
Both physical and psychological stressors recruit catecholamine cells (CA) located in the ventrolateral medulla (VLM) and the nucleus of the solitary tract (NTS). In the case of physical stressors, this effect is initiated by signals that first access the central nervous system at or below the level of the medulla. For psychological stressors, however, CA cell recruitment depends on higher structures within the neuraxis. Indeed, we have recently provided evidence of a pivotal role for the medial amygdala (MeA) in this regard, although such a role must involve a relay, as MeA neurons do not project directly to the medulla. However, some of the MeA neurons that respond to psychological stress have been found to project to the hypothalamic paraventricular nucleus (PVN), a structure that provides significant input to the medulla. To determine whether the PVN might regulate medullary CA cell responses to psychological stress, animals were prepared with unilateral injections of the neurotoxin ibotenic acid into the PVN (Experiment 1), or with unilateral injections of the retrograde tracer wheat germ agglutinin-gold (WGA-Au) into the CA cell columns of the VLM or NTS (Experiment 2). Seven days later, animals were subjected to a psychological stressor (restraint; 15 minutes), and their brains were subsequently processed for Fos plus appropriate cytoplasmic markers (Experiment 1), or Fos plus WGA-Au (Experiment 2). PVN lesions significantly suppressed the stress-related induction of Fos in both VLM and NTS CA cells, whereas tracer deposits in the VLM or NTS retrogradely labeled substantial numbers of PVN cells that were also Fos-positive after stress. Considered in concert with previous results, these data suggest that the activation of medullary CA cells in response to psychological stress may involve a critical input from the PVN. (C) 2004 Wiley-Liss, Inc.
Resumo:
A wide variety of stressors elicit Fos expression in the medial prefrontal cortex (mPFC). No direct attempts, however, have been made to determine the role of the inputs that drive this response. We examined the effects of lesions of mPFC catecholamine terminals on local expression of Fos after exposure to air puff, a stimulus that in the rat acts as an acute psychological stressor. We also examined the effects of these lesions on Fos expression in a variety of subcortical neuronal populations implicated in the control of adrenocortical activation, one classic hallmark of the stress response. Lesions of the mPFC that were restricted to dopaminergic terminals significantly reduced numbers of Fos-immunoreactive (Fos-IR) cells seen in the mPFC after air puff, but had no significant effect on stress-induced Fos expression in the subcortical structures examined. Lesions of the mPFC that affected both dopaminergic and noradrenergic terminals also reduced numbers of Fos-IR cells observed in the mPFC after air puff. Additionally, these lesions resulted in a significant reduction in stress-induced Fos-IR in the ventral bed nucleus of the stria terminalis. These results demonstrate a role for catecholaminergic inputs to the mPFC, in the generation of both local and subcortical responses to psychological stress. (C) 2004 Wiley-Liss, Inc.
Resumo:
Using Fos immunolabelling as a marker of neuronal activation, we investigated the role of the parabrachial nucleus in generating central neuronal responses to the systemic administration of the proinflarnmatory cytokine interleukin-1beta (1 mug/kg, i.a.). Relative to intact animals, parabrachial nucleus lesions significantly reduced the number of Fos-positive cells observed in the central amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the ventrolateral medulla (VLM) after systemic interleukin-1beta. In a subsequent experiment in which animals received parabrachial-directed deposits of a retrograde tracer, it was found that many neurons located in the nucleus tractus solitarius (NTS) and the VLM neurons were both retrogradely labelled and Fos-positive after interleukin-1beta administration. These results suggest that the parabrachial nucleus plays a critical role in interleukin-1beta-induced Fos expression in CeA, BNST and VLM neurons and that neurons of the NTS and VLM may serve to trigger or at least influence changes in parabrachial nucleus activity that follows systemic interleukin-1beta administration. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Soil properties that influence water movement through profiles are important for determining flow paths, reactions between soil and solute, and the ultimate destination of solutes. This is particularly important in high rainfall environments. For highly weathered deep profiles, we hypothesize that abrupt changes in the distribution of the quotient [QT = (silt + sand)/clay] reflect the boundaries between textural units or textural (TS) and hydrologic (HS) stratigraphies. As a result, QT can be used as a parameter to characterize TS and as a surrogate for HS. Secondly, we propose that if chloride distributions were correlated with QT, under non-limiting anion exchange, then chloride distributions can be used as a signature indicator of TS and HS. Soil cores to a depth of 12.5 in were taken from 16 locations in the wet tropical Johnstone River catchment of northeast Queensland, Australia. The cores belong to nine variable charge soil types and were under sugarcane (Saccharun officinarum-S) production, which included the use of potassium chloride, for several decades. The cores were segmented at I m depth increments and subsamples were analysed for chloride, pH, soil water content (theta), clay, silt and sand contents. Selected bores were capped to serve as piezometers to monitor groundwater dynamics. Depth incremented QT, theta and chloride correlated, each individually, significantly with the corresponding profile depth increments, indicating the presence of textural, hydrologic and chloride gradients in profiles. However, rapid increases in QT down the profile indicated abrupt changes in TS, suggesting that QT can be used as a parameter to characterize TS and as a surrogate for HS. Abrupt changes in chloride distributions were similar to QT, suggesting that chloride distributions can be used as a signature indicator of QT (TS) and HS. Groundwater data indicated that chloride distributions depended, at least partially, on groundwater dynamics, providing further support to our hypothesis that chloride distribution can be used as a signature indicator of HS. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
The medial prefrontal cortex (mPFC) has been strongly implicated in control of the paraventricular nucleus of the hypothalamus (PVN) response to stress. Because of the paucity of direct projections from the mPFC to the PVN, we sought to investigate possible brain regions that might act as a relay between the two during psychological stress. Bilateral ibotenic acid lesions of the rat mPFC enhanced the number of Fos-immunoreactive cells seen in the PVN after exposure to the psychological stressor, air puff. Altered neuronal recruitment was seen in only one of the candidate relay populations examined, the ventral bed nucleus of the stria terminalis (vBNST). Furthermore, bilateral ibotenic acid lesions of the BNST caused a significant attenuation of the PVN response to air puff. To better characterize the structural relationships between the mPFC and PVN, retrograde tracing studies were conducted examining Fos expression in cells retrogradely labeled with cholera toxin b subunit (CTb) from the PVN and the BNST. Results obtained were consistent with an important role for both the mPFC and BNST in the mpPVN CRF cell response to air puff. We suggest a set of connections whereby a direct PVN projection from the ipsilateral vBNST is involved in the mpPVN response to air puff and this may, in turn, be modulated by an indirect projection from the mPFC to the BNST. (C) 2004 Wiley-Liss, Inc.
Resumo:
J.L., then a 25-year-old physiotherapist, became densely amnesic following herpes simplex encephalitis. She displayed severe retrograde amnesia, category-specific semantic memory loss, and a profound anterograde amnesia affecting both verbal and visual memory. Her working memory systems were relatively spared as were most of her cognitive problem-solving abilities, but her social functioning was grossly impaired. She was able to demonstrate several previously learned physiotherapy skills, but was unable to modify her application of these procedures in accordance with patient response. She showed no memory of theoretical or propositional knowledge, and could neither plan treatment or reason clinically. Three years later, J.L. had profound impairment of anterograde and retrograde declarative memory, with relative sparing of working memory for problem solving and long-term memory of procedural skills. The theoretical and practical implications of her amnesic syndrome are discussed.
Resumo:
Tight junctions are directly involved in regulating the passage of ions and macromolecules (gate functions) in epithelial and endothelial cells. The modulation of these gate functions to transiently regulate the paracellular permeability of large solutes and ions could increase the delivery of pharmacological agents or gene transfer vectors. To reduce the inflammatory responses caused by tight junction-regulating agents, alternative strategies directly targeting specific tight junction proteins could prove to be less toxic to airway epithelia. The apical delivery of peptides corresponding to the first extracellular loop of occludin to transiently modulate apical paracellular flux has been demonstrated in intestinal epithelia. We hypothesized that apical application of these occludin peptides could similarly modulate tight junction permeability in airway epithelia. Thus, we investigated the effects of apically applied occludin peptide on the paracellular permeability of molecular tracers and viral vectors in well differentiated human airway epithelial cells. The effects of occludin peptide on cellular toxicity, tight junction protein expression and localization, and membrane integrity were also assessed. Our data showed that apically applied occludin peptide significantly reduced transepithelial resistance in airway epithelia and altered tight junction permeability in a concentration-dependent manner. These alterations enhanced the paracellular flux of dextrans as well as gene transfer vectors. The occludin peptide redistributed occludin but did not alter the expression or distribution of ZO-1, claudin-1, or claudin-4. These data suggest that specific targeting of occludin could be a better-suited alternative strategy for tight junction modulation in airway epithelial cells compared with current agents that modulate tight junctions.
Resumo:
Australian lungfish Neoceratodus forsteri may be the closest living relative to the first tetrapods and yet little is known about their retinal ganglion cells. This study reveals that lungfish possess a heterogeneous population of ganglion cells distributed in a horizontal streak across the retinal meridian, which is formed early in development and maintained through to adult stages. The number and complement of both ganglion cells and a population of putative amacrine cells within the ganglion cell layer are examined using retrograde labelling from the optic nerve and transmission electron-microscopic analysis of axons within the optic nerve. At least four types of retinal ganglion cells are present and lie predominantly within a thin ganglion cell layer, although two subpopulations are identified, one within the inner plexiform and the other within the inner nuclear layer. A subpopulation of retinal ganglion cells comprising up to 7% or the total population are significantly larger (> 400 mu m(2)) and are characterized as giant or alpha-like cells. Up to 44% of cells within the retinal ganglion cell layer represent a population of presumed amacrine cells. The optic nerve is heavily fasciculated and the proportion of myelinated axons increases with body length from 17% in subadults to 74% in adults. Spatial resolving power, based on ganglion cell spacing, is low (1.6-1.9 cycles deg(-1), n = 2) and does not significantly increase with growth. This represents the first detailed study of retinal ganglion cells in sarcopterygian fish, and reveals that, despite variation amongst animal groups, trends in ganglion cell density distribution and characteristics of cell types were defined early in vertebrate evolution.
Resumo:
Load-induced extravascular fluid flow has been postulated to play a role in mechanotransduction of physiological loads at the cellular level. Furthermore, the displaced fluid serves as a carrier for metabolites, nutrients, mineral precursors and osteotropic agents important for cellular activity. We hypothesise that load-induced fluid flow enhances the transport of these key substances, thus helping to regulate cellular activity associated with processes of functional adaptation and remodelling. To test this hypothesis, molecular tracer methods developed previously by our group were applied in vivo to observe and quantify the effects of load-induced fluid flow under four-point-bending loads. Preterminal tracer transport studies were carried out on 24 skeletally mature Sprague Dawley rats. Mechanical loading enhanced the transport of both small- and larger-molecular-mass tracers within the bony tissue of the tibial mid-diaphysis. Mechanical loading showed a highly significant effect on the number of periosteocytic spaces exhibiting tracer within the cross section of each bone. For all loading rates studied, the concentration of Procion Red tracer was consistently higher in the tibia subjected to pure bending loads than in the unloaded, contralateral tibia, Furthermore, the enhancement of transport was highly site-specific. In bones subjected to pure bending loads, a greater number of periosteocytic spaces exhibited the presence of tracer in the tension band of the cross section than in the compression band; this may reflect the higher strains induced in the tension band compared with the compression band within the mid-diaphysis of the rat tibia. Regardless of loading mode, the mean difference between the loaded side and the unloaded contralateral control side decreased with increasing loading frequency. Whether this reflects the length of exposure to the tracer or specific frequency effects cannot be determined by this set of experiments. These in vivo experimental results corroborate those of previous ex vivo and in vitro studies, Strain-related differences in tracer distribution provide support for the hypothesis that load-induced fluid flow plays a regulatory role in processes associated with functional adaptation.