979 resultados para Relevance Models
Resumo:
Two algorithms are outlined, each of which has interesting features for modeling of spatial variability of rock depth. In this paper, reduced level of rock at Bangalore, India, is arrived from the 652 boreholes data in the area covering 220 sqa <.km. Support vector machine (SVM) and relevance vector machine (RVM) have been utilized to predict the reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth. The support vector machine (SVM) that is firmly based on the theory of statistical learning theory uses regression technique by introducing epsilon-insensitive loss function has been adopted. RVM is a probabilistic model similar to the widespread SVM, but where the training takes place in a Bayesian framework. Prediction results show the ability of learning machine to build accurate models for spatial variability of rock depth with strong predictive capabilities. The paper also highlights the capability ofRVM over the SVM model.
Resumo:
We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg->H->W+W- in p=pbar collisions at the Fermilab Tevatron Collider at sqrt{s}=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% Confidence Level upper limit on \sigma(gg->H) x B(H->W+W-) is 1.75 pb at m_H=120 GeV, 0.38 pb at m_H=165 GeV, and 0.83 pb at m_H=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.
Resumo:
This paper studies an ultrasonic wave dispersion characteristics of a nanorod. Nonlocal strain gradient models (both second and fourth order) are introduced to analyze the ultrasonic wave behavior in nanorod. Explicit expressions are derived for wave numbers and the wave speeds of the nanorod. The analysis shows that the fourth order strain gradient model gives approximate results over the second order strain gradient model for dynamic analysis. The second order strain gradient model gives a critical wave number at certain wave frequency, where the wave speeds are zero. A relation among the number of waves along the nanorod, the nonlocal scaling parameter (e(0)a), and the length of the nanorod is obtained from the nonlocal second order strain gradient model. The ultrasonic wave characteristics of the nanorod obtained from the nonlocal strain gradient models are compared with the classical continuum model. The dynamic response behavior of nanorods is explained from both the strain gradient models. The effect of e(0)a on the ultrasonic wave behavior of the nanorods is also observed. (C) 2010 American Institute of Physics.
Resumo:
Statistical learning algorithms provide a viable framework for geotechnical engineering modeling. This paper describes two statistical learning algorithms applied for site characterization modeling based on standard penetration test (SPT) data. More than 2700 field SPT values (N) have been collected from 766 boreholes spread over an area of 220 sqkm area in Bangalore. To get N corrected value (N,), N values have been corrected (Ne) for different parameters such as overburden stress, size of borehole, type of sampler, length of connecting rod, etc. In three-dimensional site characterization model, the function N-c=N-c (X, Y, Z), where X, Y and Z are the coordinates of a point corresponding to N, value, is to be approximated in which N, value at any half-space point in Bangalore can be determined. The first algorithm uses least-square support vector machine (LSSVM), which is related to aridge regression type of support vector machine. The second algorithm uses relevance vector machine (RVM), which combines the strengths of kernel-based methods and Bayesian theory to establish the relationships between a set of input vectors and a desired output. The paper also presents the comparative study between the developed LSSVM and RVM model for site characterization. Copyright (C) 2009 John Wiley & Sons,Ltd.
Resumo:
We study effective models of chiral fields and Polyakov loop expected to describe the dynamics responsible for the phase structure of two-flavor QCD at finite temperature and density. We consider chiral sector described either using linear sigma model or Nambu-Jona-Lasinio model and study the phase diagram and determine the location of the critical point as a function of the explicit chiral symmetry breaking (i.e. the bare quark mass $m_q$). We also discuss the possible emergence of the quarkyonic phase in this model.
Resumo:
The question at issue in this dissertation is the epistemic role played by ecological generalizations and models. I investigate and analyze such properties of generalizations as lawlikeness, invariance, and stability, and I ask which of these properties are relevant in the context of scientific explanations. I will claim that there are generalizable and reliable causal explanations in ecology by generalizations, which are invariant and stable. An invariant generalization continues to hold or be valid under a special change called an intervention that changes the value of its variables. Whether a generalization remains invariant during its interventions is the criterion that determines whether it is explanatory. A generalization can be invariant and explanatory regardless of its lawlike status. Stability deals with a generality that has to do with holding of a generalization in possible background conditions. The more stable a generalization, the less dependent it is on background conditions to remain true. Although it is invariance rather than stability of generalizations that furnishes us with explanatory generalizations, there is an important function that stability has in this context of explanations, namely, stability furnishes us with extrapolability and reliability of scientific explanations. I also discuss non-empirical investigations of models that I call robustness and sensitivity analyses. I call sensitivity analyses investigations in which one model is studied with regard to its stability conditions by making changes and variations to the values of the model s parameters. As a general definition of robustness analyses I propose investigations of variations in modeling assumptions of different models of the same phenomenon in which the focus is on whether they produce similar or convergent results or not. Robustness and sensitivity analyses are powerful tools for studying the conditions and assumptions where models break down and they are especially powerful in pointing out reasons as to why they do this. They show which conditions or assumptions the results of models depend on. Key words: ecology, generalizations, invariance, lawlikeness, philosophy of science, robustness, explanation, models, stability
Resumo:
Yhteenveto: Talvivirtaamien redukointi vesistömallien avulla
Resumo:
We examine the stability of hadron resonance gas models by extending them to include undiscovered resonances through the Hagedorn formula. We find that the influence of unknown resonances on thermodynamics is large but bounded. We model the decays of resonances and investigate the ratios of particle yields in heavy-ion collisions. We find that observables such as hydrodynamics and hadron yield ratios change little upon extending the model. As a result, heavy-ion collisions at the RHIC and LHC are insensitive to a possible exponential rise in the hadronic density of states, thus increasing the stability of the predictions of hadron resonance gas models in this context. Hadron resonance gases are internally consistent up to a temperature higher than the crossover temperature in QCD, but by examining quark number susceptibilities we find that their region of applicability ends below the QCD crossover.
Resumo:
In this article, the problem of two Unmanned Aerial Vehicles (UAVs) cooperatively searching an unknown region is addressed. The search region is discretized into hexagonal cells and each cell is assumed to possess an uncertainty value. The UAVs have to cooperatively search these cells taking limited endurance, sensor and communication range constraints into account. Due to limited endurance, the UAVs need to return to the base station for refuelling and also need to select a base station when multiple base stations are present. This article proposes a route planning algorithm that takes endurance time constraints into account and uses game theoretical strategies to reduce the uncertainty. The route planning algorithm selects only those cells that ensure the agent will return to any one of the available bases. A set of paths are formed using these cells which the game theoretical strategies use to select a path that yields maximum uncertainty reduction. We explore non-cooperative Nash, cooperative and security strategies from game theory to enhance the search effectiveness. Monte-Carlo simulations are carried out which show the superiority of the game theoretical strategies over greedy strategy for different look ahead step length paths. Within the game theoretical strategies, non-cooperative Nash and cooperative strategy perform similarly in an ideal case, but Nash strategy performs better than the cooperative strategy when the perceived information is different. We also propose a heuristic based on partitioning of the search space into sectors to reduce computational overhead without performance degradation.
Resumo:
In the thesis we consider inference for cointegration in vector autoregressive (VAR) models. The thesis consists of an introduction and four papers. The first paper proposes a new test for cointegration in VAR models that is directly based on the eigenvalues of the least squares (LS) estimate of the autoregressive matrix. In the second paper we compare a small sample correction for the likelihood ratio (LR) test of cointegrating rank and the bootstrap. The simulation experiments show that the bootstrap works very well in practice and dominates the correction factor. The tests are applied to international stock prices data, and the .nite sample performance of the tests are investigated by simulating the data. The third paper studies the demand for money in Sweden 1970—2000 using the I(2) model. In the fourth paper we re-examine the evidence of cointegration between international stock prices. The paper shows that some of the previous empirical results can be explained by the small-sample bias and size distortion of Johansen’s LR tests for cointegration. In all papers we work with two data sets. The first data set is a Swedish money demand data set with observations on the money stock, the consumer price index, gross domestic product (GDP), the short-term interest rate and the long-term interest rate. The data are quarterly and the sample period is 1970(1)—2000(1). The second data set consists of month-end stock market index observations for Finland, France, Germany, Sweden, the United Kingdom and the United States from 1980(1) to 1997(2). Both data sets are typical of the sample sizes encountered in economic data, and the applications illustrate the usefulness of the models and tests discussed in the thesis.
Resumo:
Understanding material flow in friction stir welding is important for production of sound dissimilar metal welding that control the intermixing of two alloys being welded and consequent formation of new constituents which influences the weld properties. In the present experimental investigation material flow patterns are visualised using dissimilar and similar aluminium alloys using a simple innovative ,experiment. The experimental results reveal that only a portion of material transported from the leading edge undergoes chaotic flow and the remaining is deposited systematically in the trailing edge of the weld. Using this information it is shown that the formation of a friction stir welding defect, joint line remnant, does not occur only when the weld interface is on the advancing side. The material flow visualisation study has been utilised to analyse the mechanism of weld formation and its usefulness in improving fatigue properties and for dissimilar metal welds.
Resumo:
Non-Gaussianity of signals/noise often results in significant performance degradation for systems, which are designed using the Gaussian assumption. So non-Gaussian signals/noise require a different modelling and processing approach. In this paper, we discuss a new Bayesian estimation technique for non-Gaussian signals corrupted by colored non Gaussian noise. The method is based on using zero mean finite Gaussian Mixture Models (GMMs) for signal and noise. The estimation is done using an adaptive non-causal nonlinear filtering technique. The method involves deriving an estimator in terms of the GMM parameters, which are in turn estimated using the EM algorithm. The proposed filter is of finite length and offers computational feasibility. The simulations show that the proposed method gives a significant improvement compared to the linear filter for a wide variety of noise conditions, including impulsive noise. We also claim that the estimation of signal using the correlation with past and future samples leads to reduced mean squared error as compared to signal estimation based on past samples only.
Resumo:
Customer loyalty has been a central topic of both marketing theory and practice for several decades. Customer disloyalty, or relationship ending, has received much less attention. Despite the close relation between customer loyalty and disloyalty, they have rarely been addressed in the same study. The thesis bridges this gap by focusing on both loyal and disloyal customers and the factors characterising them. Based on a qualitative study of loyal and disloyal bank customers in the Finnish retail banking market, both factors that are common to the groups and factors that differentiate between them are identified. A conceptual framework of factors that affect customer loyalty or disloyalty is developed and used to analyse the empirical data. According to the framework, customers’ loyalty status (behavioural and attitudinal loyalty) is influenced by positive, loyalty-supporting, and negative, loyalty-repressing factors. Loyalty-supporting factors either promote customer dedication, making the customer want to remain loyal, or act as constraints, hindering the customer from switching. Among the loyalty-repressing factors it is especially important to identify those that act as triggers of disloyal behaviour, making customers switch service providers. The framework further suggests that by identifying the sources of loyalty-supporting and -repressing factors (the environment, the provider, the customer, the provider-customer interaction, or the core service) one can determine which factors are within the control of the service provider. Attitudinal loyalty is approached through a customer’s “feeling of loyalty”, as described by customers both orally and graphically. By combining the graphs with behavioural loyalty, seven customer groups are identified: Stable Loyals, Rescued Loyals, Loyals at Risk, Positive Disloyals, Healing Disloyals, Fading Disloyals, and Abrupt Disloyals. The framework and models of the thesis can be used to analyse factors that affect customer loyalty and disloyalty in different service contexts. Since the empirical study was carried out in a retail bank setting, the thesis has managerial relevance especially for banks. Christina Nordman is associated with CERS, Center for Relationship Marketing and Service Management at the Swedish School of Economics and Business Administration. The doctoral thesis is part of the Göran Collert Research Project in Customer Relationships and Retail Banking and has been funded by The Göran Collert Foundation.
Resumo:
This study examined the effects of the Greeks of the options and the trading results of delta hedging strategies, with three different time units or option-pricing models. These time units were calendar time, trading time and continuous time using discrete approximation (CTDA) time. The CTDA time model is a pricing model, that among others accounts for intraday and weekend, patterns in volatility. For the CTDA time model some additional theta measures, which were believed to be usable in trading, were developed. The study appears to verify that there were differences in the Greeks with different time units. It also revealed that these differences influence the delta hedging of options or portfolios. Although it is difficult to say anything about which is the most usable of the different time models, as this much depends on the traders view of the passing of time, different market conditions and different portfolios, the CTDA time model can be viewed as an attractive alternative.