962 resultados para Relative entropy of entanglement
Resumo:
We report observation of inverted phases consisting of spheres and/or cylinders of the majority fraction block in a poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer by solvent-induced order-disorder phase transition (ODT). The SBS sample has a molecular weight of 140K Da and a polystyrene (PS) weight fraction of 30%. Tapping mode atomic force microscopy (AFM) and transmission electron microscopy (TEM) were utilized to study the copolymer microstructure of a set of solution-cast SBS films dried with different solvent evaporation rates, R. The control with different R leads to kinetic frozen-in of microstructures corresponding to a different combination parameter chi (eff)Z of the drying films (where chi (eff) is the effective interaction parameter of the polymer solution in the cast film and Z the number of "blobs" of size equal to the correlation length one block copolymer chain contains), for which faster evaporation rates result in microstructures of smaller chi (eff)Z. As R was decreased from rapid evaporations (similar to0.1 mL/h), the microstructure evolved from a totally disordered one sequentially to inverted phases consisting of spheres and then cylinders of polybutadiene (PB) in a PS matrix and finally reached the equilibrium phase, namely cylinders of PS in a PB matrix. We interpret the formation of inverted phases as due to the increased relative importance of entropy as chi (eff)Z is decreased, which may dominate the energy penalty for having a bigger interfacial area between the immiscible blocks in the inverted phases.
Resumo:
Molar heat capacities of ( S)-ibuprofen were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 80 to 370 K. Experimental heat capacities were fitted into a polynomial equation of heat capacities ( C-p,C- m) with reduced temperature ( X), [ X = f(T)]. The polynomial equations for ( S)-ibuprofen were C-p,C- m(s) = - 39.483 X-4 - 66. 649 X-3 + 95. 196 X-2 + 210. 84 X + 172. 98 in solid state and C-p,C- m(L) = 7. 191X(3) + 4. 2774 X-2 + 56. 365 X + 498. 5 in liquid state. The thermodynamic functions relative to the reference temperature of 298. 15 K, H-T - H-298.15 and S-T - S-298.15, were derived for the( S)-ibuprofen. A fusion transition at T-m = (324. 15 +/- 0. 02) K was found from the C-p - T curve. The molar enthalpy and entropy of the fusion transition were determined to be (18. 05 +/- 0. 31) kJ.mol(-1) and (55. 71 +/- 0. 95) J.mol(-1).K-1, respectively. The purity of the ( S)-ibuprofen was determined to be 99. 44% on the basis of the heat capacity measurement. Finally, the heat capacities of ( S)-ibuprofen and racemic ibuprofen were compared.
Resumo:
Molar heat capacities of n-butanol and the azeotropic mixture in the binary system [water (x=0.716) plus n-butanol (x=0.284)] were measured with an adiabatic calorimeter in a temperature range from 78 to 320 K. The functions of the heat capacity with respect to thermodynamic temperature were established for the azeotropic mixture. A glass transition was observed at (111.9 +/- 1.1) K. The phase transitions took place at (179.26 +/- 0.77) and (269.69 +/- 0.14) K corresponding to the solid-liquid phase transitions of. n-butanol and water, respectively. The phase-transition enthalpy and entropy of water were calculated. A thermodynamic function of excess molar heat capacity with respect to temperature was established, which took account of physical mixing, destructions of self-association and cross-association for n-butanol and water, respectively. The thermodynamic functions and the excess thermodynamic ones of the binary systems relative to 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity and the calculated excess heat capacity with respect to temperature.
Resumo:
Fenoxycarb was synthesized and its heat capacities were precisely measured with an automated adiabatic calorimeter over the temperature range from 79 to 360 K. The sample was observed to melt at (326.31 +/- 0.14) K. The molar enthalpy and entropy of fusion as well as the chemical purity of the compound were determined to be (26.98 +/- 0.04) kJ-mol(-1), (82.69 +/- 0.09) J-K-1-mol(-1) and 99.53% +/- 0.01%, respectively. The thermodynamic functions relative to the reference temperature (298.15 K) were calculated based on the heat capacity measurements in the temperature range between 80 and 360 K. The extrapolated melting temperature for the absolutely pure compound obtained from fractional melting experiments was (326.62 +/- 0.06) K. Further research on the melting process of this compound was carried out by means of differential scanning calorimetry technique. The result was in agreement with that obtained from the measurements of heat capacities.
Resumo:
Frequency coupling in multifrequency discharges is a complex nonlinear interaction of the different frequency components. An alpha-mode low pressure rf capacitively coupled plasma operated simultaneously with two frequencies is investigated and the coupling of the two frequencies is observed to greatly influence the excitation and ionization within the discharge. Through this, plasma production and sustainment are dictated by the corresponding electron dynamics and can be manipulated through the dual-frequency sheath. These mechanisms are influenced by the relative voltage and also the relative phase of the two frequencies.
Resumo:
We present Roche tomograms of the G5-G8 IV/V secondary star in the long-period cataclysmic variable BV Cen reconstructed from Magellan Inamori Kyocera Echelle spectrograph echelle data taken on the Magellan Clay 6.5-m telescope. The tomograms show the presence of a number of large, cool star-spots on BV Cen for the first time. In particular, we find a large high-latitude spot which is deflected from the rotational axis in the same direction as seen on the K3-K5 IV/V secondary star in the cataclysmic variable AE Aqr. BV Cen also shows a similar relative paucity of spots at latitudes between 40° and 50° when compared with AE Aqr. Furthermore, we find evidence for an increased spot coverage around longitudes facing the white dwarf which supports models invoking star-spots at the L1 point to explain the low states observed in some cataclysmic variables. In total, we estimate that some 25 per cent of the Northern hemisphere of BV Cen is spotted. We also find evidence for a faint, narrow, transient emission line with characteristics reminiscent of the peculiar low-velocity emission features observed in some outbursting dwarf novae. We interpret this feature as a slingshot prominence from the secondary star and derive a maximum source size of 75000 km and a minimum altitude of 160000 km above the orbital plane for the prominence. The entropy landscape technique was applied to determine the system parameters of BV Cen. We find M1 = 1.18 +/-0.280.16Msolar and M2 = 1.05 +/-0.230.14Msolar and an orbital inclination of i = 53° +/- 4° at an optimal systemic velocity of ? = -22.3 km s-1. Finally, we also report on the previously unknown binarity of the G5IV star HD 220492.
Resumo:
The influence of the relative phase between the driving voltages on electron heating in asymmetric phase-locked dual frequency capacitively coupled radio frequency plasmas operated at 2 and 14 MHz is investigated. The basis of the analysis is a nonlinear global model with the option to implement a relative phase between the two driving voltages. In recent publications it has been reported that nonlinear electron resonance heating can drastically enhance the power dissipation to electrons at moments of sheath collapse due to the self-excitation of nonlinear plasma series resonance (PSR) oscillations of the radio frequency current. This work shows that depending on the relative phase of the driving voltages, the total number and exact moments of sheath collapse can be influenced. In the case of two consecutive sheath collapses a substantial increase in dissipated power compared with the known increase due to a single PSR excitation event per period is observed. Phase resolved optical emission spectroscopy (PROES) provides access to the excitation dynamics in front of the driven electrode. Via PROES the propagation of beam-like energetic electrons immediately after the sheath collapse is observed. In this work we demonstrate that there is a close relation between moments of sheath collapse, and thus excitation of the PSR, and beam-like electron propagation. A comparison of simulation results to experiments in a single and dual frequency discharge shows good agreement. In particular the observed influence of the relative phase on the dynamics of a dual frequency discharge is described by means of the presented model. Additionally, the analysis demonstrates that the observed gain in dissipation is not accompanied by an increase in the electrode’s dc-bias voltage which directly addresses the issue of separate control of ion flux and ion energy in dual frequency capacitively coupled radio frequency plasmas.
Resumo:
We study the dynamical behavior of two initially entangled qubits, each locally coupled to an environment embodied by an interacting spin chain. We consider energy-exchange qubit-environment couplings resulting in rich and highly non-trivial entanglement dynamics. We obtain exact results for the time evolution of the concurrence between the two qubits and find that, by tuning the interaction parameters, one can freeze the dynamics of entanglement, therefore inhibiting their relaxation into the spin environments, as well as activate a sudden-death phenomenon. We also discuss the effects of an environmental quantum phase transition on the features of the two-qubit entanglement dynamics.
Resumo:
This paper studies a problem of dynamic pricing faced by a retailer with limited inventory, uncertain about the demand rate model, aiming to maximize expected discounted revenue over an infinite time horizon. The retailer doubts his demand model which is generated by historical data and views it as an approximation. Uncertainty in the demand rate model is represented by a notion of generalized relative entropy process, and the robust pricing problem is formulated as a two-player zero-sum stochastic differential game. The pricing policy is obtained through the Hamilton-Jacobi-Isaacs (HJI) equation. The existence and uniqueness of the solution of the HJI equation is shown and a verification theorem is proved to show that the solution of the HJI equation is indeed the value function of the pricing problem. The results are illustrated by an example with exponential nominal demand rate.
Resumo:
In this paper we define the structural information content of graphs as their corresponding graph entropy. This definition is based on local vertex functionals obtained by calculating-spheres via the algorithm of Dijkstra. We prove that the graph entropy and, hence, the local vertex functionals can be computed with polynomial time complexity enabling the application of our measure for large graphs. In this paper we present numerical results for the graph entropy of chemical graphs and discuss resulting properties. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We analyze the effect of a quantum error correcting code on the entanglement of encoded logical qubits in the presence of a dephasing interaction with a correlated environment. Such correlated reservoir introduces entanglement between physical qubits. We show that for short times the quantum error correction interprets such entanglement as errors and suppresses it. However, for longer time, although quantum error correction is no longer able to correct errors, it enhances the rate of entanglement production due to the interaction with the environment.
Resumo:
The transfer of entanglement from optical fields to qubits provides a viable approach to entangling remote qubits in a quantum network. In cavity quantum electrodynamics, the scheme relies on the interaction between a photonic resource and two stationary intracavity atomic qubits. However, it might be hard in practice to trap two atoms simultaneously and synchronize their coupling to the cavities. To address this point, we propose and study entanglement transfer from cavities driven by an entangled external field to controlled flying qubits. We consider two exemplary non-Gaussian driving fields: NOON and entangled coherent states. We show that in the limit of long coherence time of the cavity fields, when the dynamics is approximately unitary, entanglement is transferred from the driving field to two atomic qubits that cross the cavities. On the other hand, a dissipation-dominated dynamics leads to very weakly quantum-correlated atomic systems, as witnessed by vanishing quantum discord.
Resumo:
We consider the distribution of entanglement from a multimode optical driving source to a network of remote and independent optomechanical systems. By focusing on the tripartite case, we analyse the effects that the features of the optical input states have on the degree and sharing structure of the distributed, fully mechanical, entanglement. This study, which is conducted looking at the mechanical steady state, highlights the structure of the entanglement distributed among the nodes and determines the relative efficiency between bipartite and tripartite entanglement transfer. We discuss a few open points, some of which are directed towards the bypassing of such limitations.
Resumo:
We address the presence of nondistillable (bound) entanglement in natural many-body systems. In particular, we consider standard harmonic and spin-1/2 chains, at thermal equilibrium and characterized by few interaction parameters. The existence of bound entanglement is addressed by calculating explicitly the negativity of entanglement for different partitions. This allows us to individuate a range of temperatures for which no entanglement can be distilled by means of local operations, despite the system being globally entangled. We discuss how the appearance of bound entanglement can be linked to entanglement-area laws, typical of these systems. Various types of interactions are explored, showing that the presence of bound entanglement is an intrinsic feature of these systems. In the harmonic case, we analytically prove that thermal bound entanglement persists for systems composed by an arbitrary number of particles. Our results strongly suggest the existence of bound entangled states in the macroscopic limit also for spin-1/2 systems.
Resumo:
We consider the ground-state entanglement in highly connected many-body systems consisting of harmonic oscillators and spin-1/2 systems. Varying their degree of connectivity, we investigate the interplay between the enhancement of entanglement, due to connections, and its frustration, due to monogamy constraints. Remarkably, we see that in many situations the degree of entanglement in a highly connected system is essentially of the same order as in a low connected one. We also identify instances in which the entanglement decreases as the degree of connectivity increases.