983 resultados para Receptors, Natural Killer Cell
Resumo:
Dissertation presented to obtain the PhD degree in Biology
Resumo:
Countries are currently faced with problems derived from changes in lifespan and an increase in lifestyle-related diseases. Neurodegenerative disorders such Parkinson’s (PD) and Alzheimer’s (AD) diseases are an increasing problem in aged societies. Data from World Alzheimer Report 2011 indicate that 36 million people worldwide are living with dementia. Oxidative stress has been associated with the development of AD and PD. Therefore there is interest to search for effective compounds or therapies to combat the oxidative damage in these diseases. Current evidence strongly supports a contribution of phenolic compounds present in fruits and vegetables to the prevention of neurodegenerative diseases such AD and PD. The industrial processing of a wide variety of fruits results in the accumulation of by-products without commercial value. Opuntia ficus-indica (cactus pear) is consumed fresh and processed like in juice. Prunnus avium (sweet cherry) is consumed fresh but the organoleptics characteristics of the fruits leads to the smaller and ragged fruits have no commercial value. Fruit extracts of both species has described to be rich in phenolic compounds and to have high antioxidant activities due to its composition. The aim of this work was assessing the efficacy of O. ficus-indica and P. avium by-products extracts obtained with conventional solvent extraction and pressurized liquid extraction in a neurodegeneration cell model. All extracts have protected neuroblastoma cells from H2O2-induced death at low, non-toxic levels, which approach to physiologically-relevant serum concentration. However, cherry extract has a slighter neuroprotective activity. The protective effect of Opuntia extracts are not conducted by a direct antioxidant activity since there are not decreases in intracellular ROS levels in cell treated with extracts and challenged with H2O2, while cherry extract neuroprotection seems to be due to a direct scavenging activity. Extracts from different biological matrixes seems to protect neuronal cells trough different cellular mechanisms.
Resumo:
INTRODUCTION: Ascaris lumbricoides-infected patients present lower prevalence of severe atopic dermatitis. METHODS: Peripheral blood of infected children with atopic dermatitis was assessed by flow cytometry of the frequency of Th1 and Th2 cells through the expression of CXCR3 and CCR4 chemokine receptors, respectively. RESULTS: Helminth-free patients with atopic dermatitis presented a high frequency of CCR4+Th2 cells. Parasitized patients with atopic dermatitis showed a lower frequency of CXCR3+Th1 cells compared to infected individuals only. CONCLUSIONS: Ascariasis modifies the blood traffic of Th2 cells in atopic dermatitis patients, while the allergic disease down-regulates the traffic of Th1 cells in parasitized patients.
Resumo:
RESUMO: As células dendríticas (DCs) têm a capacidade única de induzir respostas imunitárias contra as células tumorais, fagocitando antigénios tumorais e apresentando-os às células T, provocando respostas imunitárias específicas que conduzem à eliminação de células de tumorais. Por induzirem memória imunológica de longa duração, as DCs são uma estratégia atrativa para o tratamento e/ou prevenção do cancro. No entanto, os resultados terapêuticos obtidos em ensaios clínicos com DCs são escassos e pouco eficientes. O nosso grupo demonstrou que ácidos siálicos que contêm glicanos desempenham um papel funcional importante em DCs geradas ex vivo. Com o objetivo de estabelecer um modelo in vitro para avaliar a resposta anti-tumoral específica realizou-se um tratamento enzimático a DCs derivadas de monócitos (moDCs) com sialidase, enzima que cliva ácidos siálicos na superfície celular. O perfil de maturação de moDCs foi caracterizado por citometria de fluxo e expressão de citocinas. Os resultados mostram que a sialidase pode regular positivamente a expressão de moléculas co-estimuladoras na superfície de moDCs estimuladas com agonistas de Toll like receptors (TLRs). Para percebermos se o tratamento com sialidase afeta a sinalização dos TLRs foram usadas células HEK transfectadas de forma estável com TLRs 2, 4 and 7/8. Os dados mostraram que a desialilação não afeta a sinalização através estes recetores. Para investigar o impacto funcional da sialidase na capacidade de moDCs em apresentar um antigénio e ativar células T, moDCs foram tratadas, ou não, com sialidase e cultivadas com clones de células T CD8+ específicas para os péptidos derivados do antigénio tumoral gp100. Os resultados mostram que DCs HLA*02:01+ desialiladas exibem maior cross-presentation do péptido gp100280-288 às células T CD8+ específicas. Além disso o tratamento com sialidase também aumenta a capacidade de DCs de induzir a proliferação de células T CD4+. Em conjunto, os resultados indicam que moDCs com menos ácidos siálicos na superfície, têm melhor potencial imuno-estimulador, com maior capacidade de induzir respostas imunes anti-tumorais.--------------------- ABSTRACT: Dendritic cells (DCs) have a unique capacity to induce immune responses against tumor cells. They can phagocyte tumor antigens, maturate and present them to T cells, triggering antigen-specific immune responses that may lead to the elimination of tumor cells. Since they induce long-lasting immunological memory, DCs become an attractive strategy as cellular targets for vaccines in the treatment and/or prevention of cancer. However, the therapeutic results obtained in clinical trials with DCs are scarce and only few patients effectively respond to the DC vaccines. Our group has shown that sialic acid containing glycans play an important functional role in ex vivo generated DC. Here we aimed to establish an in vitro model to assess specific antitumor responses. To achieve this, an enzymatic treatment of monocyte-derived DCs (moDCs) was performed using sialidase to cleave surface sialic acids. The maturation profile of the moDCs was characterized by flow cytometry and cytokine expression. The results show that sialidase treatment can upregulate co-stimulatory molecules on surface of moDCs stimulated with Toll like receptor (TLR) agonists. To understand whether sialidase treatment affected the TLR signaling, we have used HEK cells stably transfected with TLRs 2, 4 and 7/8. The data showed that desialylation of moDCs does not affect the signaling via these receptors. To investigate the functional impact of sialidase treatment in the capacity of moDCs to present antigen and to activate antigen specific T cells, sialidase treated and untreated moDCs were co-cultured with CD8+ T cell clones specific for peptides derived from the gp100 tumor antigen. Our results show that desialylated HLA02:01+ DCs are superior in cross-presentation of the peptide to gp100280–288 specific CD8+ T cells. In addition, sialidase treatment also increased the DC capacity to induce CD4+ T cells proliferation. Together, these data indicate that moDCs with altered cell surface sialic acids, through a sialidase treatment, have a better immunostimulatory potential which could improve anti-tumor immune responses.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Biomateriais, Reabilitação e Biomecânica)
Resumo:
Bacteriophages (phages), natural enemies of bacteria, can encode enzymes able to degrade polymeric substances. These substances can be found in the bacterial cell surface, such as polysaccharides, or are produced by bacteria when they are living in biofilm communities, the most common bacterial lifestyle. Consequently, phages with depolymerase activity have a facilitated access to the host receptors, by degrading the capsular polysaccharides, and are believed to have a better performance against bacterial biofilms, since the degradation of extracellular polymeric substances by depolymerases might facilitate the access of phages to the cells within different biofilm layers. Since the diversity of phage depolymerases is not yet fully explored, this is the first review gathering information about all the depolymerases encoded by fully sequenced phages. Overall, in this study, 160 putative depolymerases, including sialidases, levanases, xylosidases, dextranases, hyaluronidases, peptidases as well as pectate/pectin lyases, were found in 143 phages (43 Myoviridae, 47 Siphoviridae, 37 Podoviridae, and 16 unclassified) infecting 24 genera of bacteria. We further provide information about the main applications of phage depolymerases, which can comprise areas as diverse as medical, chemical, or food-processing industry.
Resumo:
Semliki Forest virus (SFV) vectors have been efficiently used for rapid high level expression of several G protein-coupled receptors. Here we describe the use of SFV vectors to express the alpha 1b-adrenergic receptor (AR) alone or in the presence of the G protein alpha q and/or beta 2 and gamma 2 subunits. Infection of baby hamster kidney (BHK) cells with recombinant SFV-alpha 1b-AR particles resulted in high specific binding activity of the alpha 1b-AR (24 pmol receptor/mg protein). Time-course studies indicated that the highest level of receptor expression was obtained 30 hours post-infection. The stimulation of BHK cells, with epinephrine led to a 5-fold increase in inositol phosphate (IP) accumulation, confirming the functional coupling of the receptor to G protein-mediated activation of phospholipase C. The SFV expression system represents a rapid and reproducible system to study the pharmacological properties and interactions of G protein coupled receptors and of G protein subunits.
Resumo:
B and T lymphocyte attenuator (BTLA) is a negative regulator of T cell activation, but its function in vivo is not well characterized. Here we show that mice deficient in full-length BTLA or its ligand, herpesvirus entry mediator, had increased number of memory CD8(+) T cells. The memory CD8(+) T cell phenotype resulted from a T cell-intrinsic perturbation of the CD8(+) T cell pool. Naive BTLA-deficient CD8(+) T cells were more efficient than wild-type cells at generating memory in a competitive antigen-specific system. This effect was independent of the initial expansion of the responding antigen-specific T cell population. In addition, BTLA negatively regulated antigen-independent homeostatic expansion of CD4(+) and CD8(+) T cells. These results emphasize two central functions of BTLA in limiting T cell activity in vivo.
Resumo:
Despite the existence of erythrocyte-autoreactive B cells in normal animals, erythrocyte-autoantibodies could not be detected during polyclonal B-cell activation (PBA) both in patients with visceral leishmaniasis and in bacterial lipopolysacharide (LPS) - injected mice. The failure to detect these autoantibodies in mice with PBA di not seem to be due to suppressor-cell activity, since (1) transfer of spleen cells from LPS-treated mice to naive recipients did not affect the erythrocyte-autoantibody response elicited by subsequent injections of rat erythrocytes and (2) low doses of X-radiation did no lead to erythrocyte-autoantibody detection in LPS-treated mice. The possibility that the detection of erytrocyte-autoantibodies could be affected by autoantibodies with idiotopes mimicring erythrocyte epitopes, the synthesis of which would also be triggerred in PBA, is discussed. Indirect evidence for the existence in normal animal of an expanded lymphocyte population with DNP-binding. Ia-mimicring antigen receptors is presented.
Resumo:
The Notch family of evolutionarily conserved proteins regulates a broad spectrum of cell-fate decisions and differentiation processes during fetal and post-natal development. The best characterized role of Notch signaling during mammalian hematopoiesis and lymphopoiesis is the essential function of the Notch1 receptor in T-cell lineage commitment. More recent studies have addressed the roles of other Notch receptors and ligands, as well as their downstream targets, revealing additional novel functions of Notch signaling in intra-thymic T-cell development, B-cell development and peripheral T-cell function.
Resumo:
CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.
Resumo:
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins secreted in response to oral glucose ingestion by intestinal L and K cells, respectively. The molecular mechanisms responsible for intestinal cell glucose sensing are unknown but could be related to those described for beta-cells, brain and hepatoportal sensors. We determined the role of GLUT2, GLP-1 or GIP receptors in glucose-induced incretins secretion, in the corresponding knockout mice. GLP-1 secretion was reduced in all mutant mice, while GIP secretion did not require GLUT2. Intestinal GLP-1 content was reduced only in GIP and GLUT2 receptors knockout mice suggesting that this impairment could contribute to the phenotype. Intestinal GIP content was similar in all mice studied. Furthermore, the impaired incretins secretion was associated with a reduced glucose-stimulated insulin secretion and an impaired glucose tolerance in all mice. In conclusion, both incretins secretion depends on mechanisms involving their own receptors and GLP-1 further requires GLUT2.
Resumo:
Clinical and experimental evidence suggests that synovial thrombin formation in arthritic joints is prominent and deleterious, leading to exacerbation of rheumatoid arthritis (RA). In this context, cellular effects of thrombin mediated by the protease-activated receptors (PARs) in arthritic joints may be of paramount significance. Four PARs have now been identified. PAR1, PAR3, and PAR4 can all be activated by thrombin whereas PAR2 is activated by trypsin and few other proteases.We first explored PARs expression in RA synovial tissues. Synovial membranes from 11 RA patients were analyzed for PARs expression by RT-PCR and by immunohistology. PAR4 was found in all the biopsies, whereas the expression of PAR1, PAR 2 and PAR3 was more restricted (8/11, 5/11 and 3/11 respectively). In the arthritic synovial membrane of murine antigen-induced arthritis (AIA) we found coexpression of the four different PARs. Next, we explored the functional importance of PAR1 during AIA in vivo using PAR-1 deficient mice. The phenotype of PAR1-deficient mice (n = 22), based on the analysis of arthritis severity (as measured by 99 m tecnetium uptake, histological scoring and intra-articular fibrin measurements) was similar to that of wild-type mice (n = 24). In addition, the in vivo production of antibodies against mBSA was also similar. By contrast, the mBSA-induced in vitro lymph node cell proliferation was significantly decreased in PAR1-deficient mice as compared with controls. Accordingly, mBSA-induced production of interferon-γ by lymph node cells in culture was significantly decreased in PAR1-deficient mice as compared with controls, whereas opposite results were observed for production of IL-10.
Resumo:
Novel cancer vaccines are capableto efficiently induce and boost humantumor antigen specific T-cells. However,the properties of these CD8T-cells are only partially characterized.For in depth investigation ofT-cells following Melan-A/MART-1peptide vaccination in melanoma patients,we conducted a detailed prospectivestudy at the single cell level.We first sorted individual human naiveand effector CD8 T-cells from peripheralblood by flow cytometry, andtested a modified RT-PCR protocolincluding a global amplification ofexpressed mRNAs to obtain sufficientcDNAfromsingle cells.We successfullydetected the expression ofseveral specific genes of interest evendown to 106-fold dilution (equivalentto 10-5 cell). We then analyzed tumor-specific effector memory (EM)CD8T-cell subpopulations ex vivo, assingle cells from vaccinated melanomapatients. To elucidate the hallmarksof effective immunity the genesignatures were defined by a panel ofgenes related to effector functions(e.g. IFN-, granzyme B, perforin),and individual clonotypes were identifiedaccording to the expression ofdistinct T-cell receptors (TCR). Usingthis novel single cell analysis approach,we observed that T-cell differentiationis clonotype dependent,with a progressive restriction in TCRBV clonotype diversity from EMCD28pos to EMCD28neg subsets. However,the effector function gene imprintingis clonotype-independent,but dependent on differentiation,since it correlates with the subset oforigin (EMCD28pos or EMCD28neg). We also conducted a detailedcomparative analysis after vaccinationwith natural vs. analog Melan-Apeptide. We found that the peptideused for vaccination determines thefunctional outcome of individualT-cell clonotypes, with native peptideinducing more potent effector functions.Yet, selective clonotypic expansionwith differentiation was preservedregardless of the peptide usedfor vaccination. In summary, the exvivo single cell RT-PCR approach ishighly sensitive and efficient, andrepresents a reliable and powerfultool to refine our current view of molecularprocesses taking place duringT-cell differentiation.
Resumo:
AbstractThe vertebrate immune system is composed of the innate and the adaptive branches. Innate immune cells represent the first line of defense and detect pathogens through pattern recognition receptors (PRRs), detecting evolutionary conserved pathogen- and danger- associated molecular patterns. Engagement of these receptors initiates the inflammatory response, but also instructs antigen-specific adaptive immune cells. NOD-like receptors (NLRs) are an important group of PRRs, leading to the production of inflammatory mediators and favoring antigen presentation to Τ lymphocytes through the regulation of major histocompatibility complex (MHC) molecules.In this work we focused our attention on selected NOD-like receptors (NLRs) and their role at the interface between innate and adaptive immunity. First, we describe a new regulatory mechanism controlling IL-1 production. Our results indicate that type I interferons (IFNs) block NLRP1 and NLRP3 inflammasome activity and interfere with LPS-driven proIL-Ια and -β induction. As type I IFNs are produced upon viral infections, these anti-inflammatory effects of type I IFN could be relevant in the context of superinfections, but could also help explaining the efficacy of IFN-β in multiple sclerosis treatment.The second project addresses the role of a novel NLR family member, called NLRC5. The function of this NLR is still matter of debate, as it has been proposed as both an inhibitor and an activator of different inflammatory pathways. We found that the expression of this protein is restricted to immune cells and is positively regulated by IFNs. We generated Nlrc5-deficient mice and found that this NLR plays an essential role in Τ, NKT and, NK lymphocytes, in which it drives the expression of MHC class I molecules. Accordingly, we could show that CD8+ Τ cell-mediated killing of target lymphocytes lacking NLRC5 is strongly impaired. Moreover, NLRC5 expression was found to be low in many lymphoid- derived tumor cell lines, a mechanism that could be exploited by tumors to escape immunosurveillance.Finally, we found NLRC5 to be involved in the production of IL-10 by CD4+ Τ cells, as Nlrc5- deficient Τ lymphocytes produced less of this cytokine upon TCR triggering. In line with these observations, Mrc5-deficient CD4+ Τ cells expanded more than control cells when transferred into lymphopenic hosts and led to a more rapid appearance of colitis symptoms. Therefore, our work gives novel insights on the function of NLRC5 by using knockout mice, and strongly supports the idea that NLRs direct not only innate, but also adaptive immune responses.