961 resultados para Reactors
Resumo:
Hydrometallurgical process modeling is the main objective of this Master’s thesis work. Three different leaching processes namely, high pressure pyrite oxidation, direct oxidation zinc concentrate (sphalerite) leaching and gold chloride leaching using rotating disc electrode (RDE) are modeled and simulated using gPROMS process simulation program in order to evaluate its model building capabilities. The leaching mechanism in each case is described in terms of a shrinking core model. The mathematical modeling carried out included process model development based on available literature, estimation of reaction kinetic parameters and assessment of the model reliability by checking the goodness fit and checking the cross correlation between the estimated parameters through the use of correlation matrices. The estimated parameter values in each case were compared with those obtained using the Modest simulation program. Further, based on the estimated reaction kinetic parameters, reactor simulation and modeling for direct oxidation zinc concentrate (sphalerite) leaching is carried out in Aspen Plus V8.6. The zinc leaching autoclave is based on Cominco reactor configuration and is modeled as a series of continuous stirred reactors (CSTRs). The sphalerite conversion is calculated and a sensitivity analysis is carried out so to determine the optimum reactor operation temperature and optimum oxygen mass flow rate. In this way, the implementation of reaction kinetic models into the process flowsheet simulation environment has been demonstrated.
Resumo:
A fixação biológica de dióxido de carbono por microalgas é considerada a melhor forma de fixar CO2. Dentre os microrganismos utilizados destaca-se Spirulina platensis devido às suas altas taxas de fixação de CO2 e variedade de aplicações da biomassa gerada. A aplicação de modelos e simulações pode auxiliar na previsão de custos e na escolha das condições ideais de cultivo. Este trabalho teve como objetivo etsabelecer um modelo cinético no qual a iluminância é o fator limitante para o crescimento da microalga Spirulina platensis. A fim de validar o modelo proposto foi utilizada a microalga S. platensis, cultivada em meio Zarrouk modificado (NaHCO3 1,0 g.L-1 ), em biorreator aberto tipo raceway de 200L, mantido a 30°C, sob iluminação natural. A concentração celular variou de 0,19 a 0,34 g.L-1 e a velocidade específica de crescimento celular obtida a partir da regressão exponencial das curvas de crescimento de cada período iluminado variou de 0,55 a 0,59 d-1 . O modelo proposto gerou dados estimados satisfatórios (r2 =0,97). De acordo com os dados obtidos 16,2% da biomassa é consumida durante o período não iluminado.
Resumo:
The design demands on water and sanitation engineers are rapidly changing. The global population is set to rise from 7 billion to 10 billion by 2083. Urbanisation in developing regions is increasing at such a rate that a predicted 56% of the global population will live in an urban setting by 2025. Compounding these problems, the global water and energy crises are impacting the Global North and South alike. High-rate anaerobic digestion offers a low-cost, low-energy treatment alternative to the energy intensive aerobic technologies used today. Widespread implementation however is hindered by the lack of capacity to engineer high-rate anaerobic digestion for the treatment of complex wastes such as sewage. This thesis utilises the Expanded Granular Sludge Bed bioreactor (EGSB) as a model system in which to study the ecology, physiology and performance of high-rate anaerobic digestion of complex wastes. The impacts of a range of engineered parameters including reactor geometry, wastewater type, operating temperature and organic loading rate are systematically investigated using lab-scale EGSB bioreactors. Next generation sequencing of 16S amplicons is utilised as a means of monitoring microbial ecology. Microbial community physiology is monitored by means of specific methanogenic activity testing and a range of physical and chemical methods are applied to assess reactor performance. Finally, the limit state approach is trialled as a method for testing the EGSB and is proposed as a standard method for biotechnology testing enabling improved process control at full-scale. The arising data is assessed both qualitatively and quantitatively. Lab-scale reactor design is demonstrated to significantly influence the spatial distribution of the underlying ecology and community physiology in lab-scale reactors, a vital finding for both researchers and full-scale plant operators responsible for monitoring EGSB reactors. Recurrent trends in the data indicate that hydrogenotrophic methanogenesis dominates in high-rate anaerobic digestion at both full- and lab-scale when subject to engineered or operational stresses including low-temperature and variable feeding regimes. This is of relevance for those seeking to define new directions in fundamental understanding of syntrophic and competitive relations in methanogenic communities and also to design engineers in determining operating parameters for full-scale digesters. The adoption of the limit state approach enabled identification of biological indicators providing early warning of failure under high-solids loading, a vital insight for those currently working empirically towards the development of new biotechnologies at lab-scale.
Resumo:
Trinitrotoluene in the purification step (TNT) produced in industries, are carried out two washes at the end of the process. The first wash is done with vaporized water, which originates from the first effluent called yellow water, then the second washing with the use of sodium sulfite is performed (Na2SO3), generating a second effluent red water. This study aimed to study the individual effects, as well as the association of heterogeneous photocatalysis using TiO2 and biological treatment in air lift reactor using activated sludge (bacterial biomass) for the remediation of wastewater contaminated with nitroaromatic compounds in order to reduce toxicity and adjust the legal parameters according to regulatory agencies for disposal in waterways. The photocatalytic treatment was conducted by factorial design obtaining the best reaction conditions (pH 6.5 and concentration of TiO2 0.1 gL-1), with best results obtained at 360 minutes of reaction, reducing the absorbance 97.00%, 94.20% of the chemical oxygen demand (COD), 67.70% of total phenols, as well as a total reduction of observed peaks and assigned to nitroaromatic compounds by high-performance liquid chromatography. In the biological treatment, there was a 53.40% reduction in absorbance at 275 nm 10.00% 36.00% COD and total phenols in a short time (3 days), while for extended periods (48 days) there was an antagonistic influence on the results so that was the elevation of these parameters (COD and total phenols) instead of reducing. Chromatographic analysis confirmed the effectiveness of the biological degradation by reducing the peaks corresponding to compounds DNT and TNT. The Association of photocatalytic and biological treatments decreased results in the order of 91.10% absorbance, 70.26% of total phenols and 88.87% of COD. While the combination of biological and photocatalytic treatments generated relatively lower efficiencies, with 77.30% of absorbance reduction, 62.10% reduction of total phenols and a decrease of 87.00% of COD. In general, when comparing the chemical and biological processes in isolation, the photocatalytic treatment showed the best results. However, comparing the results of isolation and established associations, the association biological x photocatalysis showed more promising results in the treatment of red water effluent.
Resumo:
"Work performed under contract no. W-7405-Eng.-26."
Resumo:
The photodenitrogenation of vinyl azides to 2H-azirines by using a photoflow reactor is reported and compared with thermal formation of 2H-azirines. Photochemically, the ring of the 2H-azirines was opened to yield the nitrile ylides, which underwent a [3 + 2]-cycloaddition with 1,3-dipolarophiles. When diisopropyl azodicarboxylate serves as the dipolarophile, 1,3,4-triazoles become directly accessible starting from the corresponding vinyl azide. © 2013 Cludius-Brandt et al.