960 resultados para Reactive Power Flow
Resumo:
Near-Resonant Holographic Interferometry is a powerful technique which extends the established advantages of conventional holographic interferometry by allowing a species-specific number density to be determined. It has been tested in the harsh flow conditions generated in a high enthalpy facility yielding information about the shock shape on a cylindrical body and on the distribution of a trace species seeded into the flow.
Resumo:
A model has been developed which enables the viscosities of coal ash slags to be predicted as a function of composition and temperature under reducing conditions. The model describes both completely liquid and heterogeneous, i.e. partly crystallised, slags in the Al2O3-CaO-'FeO'-SiO2 system in equilibrium with metallic iron. The Urbain formalism has been modified to describe the viscosities of the liquid slag phase over the complete range of compositions and a wide range of temperatures. The computer package F * A * C * T was used to predict the proportions of solids and the compositions of the remaining liquid phases. The Roscoe equation has been used to describe the effect of presence of solid suspension (slurry effect) on the viscosity of partly crystallised slag systems. The model provides a good description of the experimental data of fully liquid, and liquid + solids mixtures, over the complete range of compositions and a wide range of temperatures. This model can now be used for viscosity predictions in industrial slag systems. Examples of the application of the new model to coal ash fluxing and blending are given in the paper. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents the comparison of surface diffusivities of hydrocarbons in activated carbon. The surface diffusivities are obtained from the analysis of kinetic data collected using three different kinetics methods- the constant molar flow, the differential adsorption bed and the differential permeation methods. In general the values of surface diffusivity obtained by these methods agree with each other, and it is found that the surface diffusivity increases very fast with loading. Such a fast increase can not be accounted for by a thermodynamic Darken factor, and the surface heterogeneity only partially accounts for the fast rise of surface diffusivity versus loading. Surface diffusivities of methane, ethane, propane, n-butane, n-hexane, benzene and ethanol on activated carbon are reported in this paper.
Resumo:
In this paper, we develop a theory for diffusion and flow of pure sub-critical adsorbates in microporous activated carbon over a wide range of pressure, ranging from very low to high pressure, where capillary condensation is occurring. This theory does not require any fitting parameter. The only information needed for the prediction is the complete pore size distribution of activated carbon. The various interesting behaviors of permeability versus loading are observed such as the maximum permeability at high loading (occurred at about 0.8-0.9 relative pressure). The theory is tested with diffusion and flow of benzene through a commercial activated carbon, and the agreement is found to be very good in the light that there is no fitting parameter in the model. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Understanding the genetic architecture of quantitative traits can greatly assist the design of strategies for their manipulation in plant-breeding programs. For a number of traits, genetic variation can be the result of segregation of a few major genes and many polygenes (minor genes). The joint segregation analysis (JSA) is a maximum-likelihood approach for fitting segregation models through the simultaneous use of phenotypic information from multiple generations. Our objective in this paper was to use computer simulation to quantify the power of the JSA method for testing the mixed-inheritance model for quantitative traits when it was applied to the six basic generations: both parents (P-1 and P-2), F-1, F-2, and both backcross generations (B-1 and B-2) derived from crossing the F-1 to each parent. A total of 1968 genetic model-experiment scenarios were considered in the simulation study to quantify the power of the method. Factors that interacted to influence the power of the JSA method to correctly detect genetic models were: (1) whether there were one or two major genes in combination with polygenes, (2) the heritability of the major genes and polygenes, (3) the level of dispersion of the major genes and polygenes between the two parents, and (4) the number of individuals examined in each generation (population size). The greatest levels of power were observed for the genetic models defined with simple inheritance; e.g., the power was greater than 90% for the one major gene model, regardless of the population size and major-gene heritability. Lower levels of power were observed for the genetic models with complex inheritance (major genes and polygenes), low heritability, small population sizes and a large dispersion of favourable genes among the two parents; e.g., the power was less than 5% for the two major-gene model with a heritability value of 0.3 and population sizes of 100 individuals. The JSA methodology was then applied to a previously studied sorghum data-set to investigate the genetic control of the putative drought resistance-trait osmotic adjustment in three crosses. The previous study concluded that there were two major genes segregating for osmotic adjustment in the three crosses. Application of the JSA method resulted in a change in the proposed genetic model. The presence of the two major genes was confirmed with the addition of an unspecified number of polygenes.
Resumo:
Wet agglomeration processes have traditionally been considered an empirical art, with great difficulties in predicting and explaining observed behaviour. Industry has faced a range of problems including large recycle ratios, poor product quality control, surging and even the total failure of scale up from laboratory to full scale production. However, in recent years there has been a rapid advancement in our understanding of the fundamental processes that control granulation behaviour and product properties. This review critically evaluates the current understanding of the three key areas of wet granulation processes: wetting and nucleation, consolidation and growth, and breakage and attrition. Particular emphasis is placed on the fact that there now exist theoretical models which predict or explain the majority of experimentally observed behaviour. Provided that the correct material properties and operating parameters are known, it is now possible to make useful predictions about how a material will granulate. The challenge that now faces us is to transfer these theoretical developments into industrial practice. Standard, reliable methods need to be developed to measure the formulation properties that control granulation behaviour, such as contact angle and dynamic yield strength. There also needs to be a better understanding of the flow patterns, mixing behaviour and impact velocities in different types of granulation equipment. (C) 2001 Elsevier Science B.V. All rights reserved.
A broadband uniplanar quasi-yagi antenna: Parameter study in application to a spatial power combiner
Resumo:
To examine whether nucleolar organizer regions detected by argyrophilia (Ag-NOR counts) can be used as a prognostic indicator in phyllodes tumors of the breast, and to compare its usefulness with that of DNA flow cytometric analysis, 28 cases of breast phyllodes tumors (including 15 benign, two borderline and 11 malignant tumors) were subjected to Ag-NOR staining and counting as well as DNA flow cytometric analysis. S-phase fraction and DNA ploidy analysis showed useful trends for improving outcome predictions in malignant phyllodes tumors. However, high Ag-NOR counts were significant in predicting survival status (P = 0.013) and reached near statistical significance in predicting survival times (P = 0.07). In predicting survival status, results for Ag-NOR counts were significantly better than those for ploidy analysis (P = 0.02) and S-phase fraction (P < 0.01). Only S-phase fraction was significantly predictive of survival times (P = 0.025). It is concluded that Ag-NOR counts and DNA flow cytometric analysis, easily performed using paraffin sections, give information that can improve predictions made by histopathological classification. Ag-NOR counts are significant in predicting survival in the presence of histopathological features of malignancy.
Resumo:
We investigate the size and power properties of the AH test of evolutionary change. This involves examining whether the size results are sensitive to both the number of individual frequencies estimated and the spectral shape adopted under the null hypothesis. The power tests examine whether the test has good power to detect shifts in both spectral position (variance) and spectral shape (autocovariance structure).
Resumo:
An experimental study has been carried out for the gas-liquid two-phase flow in a packed bed simulating conditions of the gas and liquid flows in the lower part of blast furnace. The localised liquid flow phenomenon in presence of gas cross flow, which usually occurs around the cohesive zone and raceway in blast furnace, was investigated in detail. Such liquid flow is characterised in terms of liquid shift distance or liquid shift angle that can effectively be measured by the experiments involved in the current study. It is found that liquid shift angle does not significantly increase or decrease with different packing depth. This finding supports the hypothesis of the force balance model where a vectorial relationship among acting forces, i.e. gas drag force, gravitational force and solid-liquid friction force, and liquid shift angle does exist. Liquid shift angle is inversely proportional to particle size and liquid density, and proportional to square of gas superficial velocity, but is almost independent on liquid flowrate and liquid viscosity. The gas-liquid drag coefficient, an important aspect for quantifying the interaction between gas and liquid flows, was conceptually modified based on the discrete feature of liquid flow through a packed bed and evaluated by the combined theoretical and experimental investigation. Experimental measurements suggest that the gas-liquid drag coefficient is approximately a constant (C-DG(')=5.4+/-1.0) and is independent on liquid properties, gas velocity and packing structure. The result shows a good agreement with previous experimental data and prediction of the existing liquid flow model.
Resumo:
T cell cytokine profiles and specific serum antibody levels in five groups of BALB/c mice immunized with saline alone, viable Fusobacterium nucleatum ATCC 25586, viable Porphyromonas gingivalis ATCC 33277, F. nucleatum followed by P. gingivalis and P. gingivalis followed by F nucleatum were determined. Splenic CD4 and CD8 cells were examined for intracytoplasmic interleukin (IL)-4, interferon (IFN)-gamma and IL-10 by dual colour flow cytometry and the levels of serum anti-F. nucleatum and anti-P. gingivalis antibodies determined by an ELISA. Both Th1 and Th2 responses were demonstrated by all groups, and while there were slightly lower percentages of cytokine positive T cells in mice injected with F. nucleatum alone compared with the other groups immunized with bacteria., F nucleatum had no effect on the T cell production of cytokines induced by P gingivalis in the two groups immunized with both organisms. However, the percentages of cytokine positive CD8 cells were generally significantly higher than those of the CD4 cells. Mice immunized with F nucleatum alone had high levels of serum anti-E nucleatum antibodies with very low levels of P. gingivalis antibodies, whereas mice injected with P gingivalis alone produced anti-P. gingivalis antibodies predominantly. Although the levels of anti-E nucleatum antibodies in mice injected with E nucleatum followed by P. gingivalis were the same as in mice immunized with F nucleatum alone, antibody levels to P. gingivalis were very low. In contrast, mice injected with P. gingivalis followed by F nucleatum produced equal levels of both anti-P. gingivalis and anti-F nucleatum antibodies, although at lower levels than the other three groups immunized with bacteria, respectively. Anti-Actinobacillus actitiomycetemcomitans, Bacteroides forsythus and Prevotella intermedia serum antibody levels were also determined and found to be negligible. In conclusion, F nucleatum immunization does not affect the splenic T cell cytokine response to P. gingivalis. However, F nucleatum immunization prior to that of P. gingivalis almost completely inhibited the production of anti-P gingivalis antibodies while P. gingivalis injection before F. nucleatum demonstrated a partial inhibitory effect by P. gingivalis on antibody production to F. nucleatum. The significance of these results with respect to human periodontal disease is difficult to determine. However, they may explain in part differing responses to P. gingivalis in different individuals who may or may not have had prior exposure to F. nucleatum. Finally, the results suggested that P. gingivalis and F. nucleatum do not induce the production of cross-reactive antibodies to other oral microorganisms.
Resumo:
This paper examines why practitioners and researchers get different estimates of equity value when they use a discounted cash flow (CF) model versus a residual income (RI) model. Both models are derived from the same underlying assumption -- that price is the present value of expected future net dividends discounted at the cost of equity capital -- but in practice and in research they frequently yield different estimates. We argue that the research literature devoted to comparing the accuracy of these two models is misguided; properly implemented, both models yield identical valuations for all firms in all years. We identify how prior research has applied inconsistent assumptions to the two models and show how these seemingly small errors cause surprisingly large differences in the value estimates. [ABSTRACT FROM AUTHOR]
Resumo:
Heat shock protein 60s (hsp60) are remarkably immunogenic, and both T-cell and antibody responses to hsp60 have been reported in various inflammatory conditions. To clarify the role of hsp60 in T-cell responses in periodontitis, we examined the proliferative response of peripheral blood mononuclear cells (PBMC), as well as the cytokine profile and T-cell clonality, for periodontitis patients and controls following stimulation with recombinant human hsp60 and Porphyromonas gingivalis GroEL. To confirm the infiltration of hsp60-reactive T-cell clones into periodontitis lesions, nucleotide sequences within complementarity-determining region 3 of the T-cell receptor (TCR) beta-chain were compared between hsp60-reactive peripheral blood T cells and periodontitis lesion-infiltrating T cells. Periodontitis patients demonstrated significantly higher proliferative responses of PBMC to human hsp60, but not to P. gingivalis GroEL, than control subjects. The response was inhibited by anti-major histocompatibility complex class 11 antibodies. Analysis of the nucleotide sequences of the TCR demonstrated that human hsp60-reactive T-cell clones and periodontitis lesion-infiltrating T cells have the same receptors, suggesting that hsp60-reactive T cells accumulate in periodontitis lesions. Analysis of the cytokine profile demonstrated that hsp60-reactive PBMC produced significant levels of gamma interferon (IFN-gamma) in periodontitis patients, whereas P. gingivalis GroEL did not induce any, skewing toward a type1 or type2 cytokine profile. In control subjects no significant expression of IFN-gamma or interleukin 4 was induced. These results suggest that periodontitis patients have human hsp60-reactive T cells with a type I cytokine profile in their peripheral blood T-cell pools.