992 resultados para Rare earth additions


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Er3+, Yb3+ and Tm3+ codoped fluorophosphate glasses emitting blue, green and red upconversion luminescence at 970 nm laser diode excitation were studied. It was shown that Tm3+ behaves as the sensitizer to Er3+ for the green upconversion luminescence through the energy transfer process: Tm 3+:H-3(4) + Er3+:I-4(15/2) -> Er3+:I-4(9/2) + Tm3+:H-3(6), and for the red upconversion luminescence through the energy transfer process: Tm3+:F-3(4) + Er3+:I-4(11/2) -> TM3+:H-3(6) + Er3+:4 F-9/2. Moreover, Er3+ acts as quenching center for the blue upconversion luminescence of TM3+. The sensitization of Tm3+ to Er3+ depends on the concentration of Yb3+. The intensity of blue, green and red emissions can be changed by adjusting the concentrations of the three kinds of rare earth ions. This research may provide useful information for the development of high color and spatial resolution devices and white light simulation. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2.0 μm spectroscopic properties of Er3+/Tm3+/Ho3+ triply-doped fluorophosphate glasses pumped by 808 nm and the energy transfer mechanisms between the three rare earth ions were investigated. J-O theory was used to calculate the parameters of Ho3+ in fluorophosphate glasses. Absorption and emission cross-sections and the gain coefficients were calculated. The obtained lifetime r and spontaneous transition probability Ar of Ho3+:5I7 level were 10.64 ms and 93.95 s-1 respectively. The calculated maximum emission cross-section of 2.0 μm was 9.26×10-21 cm2. The energy transfer analysis indicated that the cross-relaxation of Tm3+ was important and the resonent energy transfer in Er3+&rarrHo3+, Tm3+&rarrHo3+, Er3+&rarrTm3+&rarrHo3+ process was the main channel. The study revealed that the Er3+/Tm3+/Ho3+ triply-doped fluorophosphate glass would be a potential material for 2.0 μm emission because of the efficient sensitization of Er3+ and Tm3+ to Ho3+.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Er3+-doped halide modified tellurite glasses were synthesized by conventional melting and quenching method. The Judd-Ofelt analysis was performed on the absorption spectra and the transition probabilities, excited state lifetimes, and the branching ratios were calculated and discussed. The intense infrared and visible fluorescence spectra under 980 nm excitation were obtained. Strong upconversion signal was observed at pumping power as low as 30 mW in the glasses with halide ions. The upconversion mechanisms and power dependent intensities were discussed, which showed two-photon process are involved for the green and red emissions. The decay times of the emitting states and the corresponding quantum efficiency were determined and explained. (C) 2004 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Infrared-to-visible upconversion fluorescence of Er(3+)/Yb(3+) co-doped lithium-strontium-lead-bismuth (LSPB) glasses for developing potential upconversion lasers has been studied under 975-nm excitation. Based on the results of energy transfer efficiency and upconversion spectra, the optimal Yb(3+)-Er(3+) concentration ratio is found to be 5:1. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H_(11/2)-->4I_(15/2), 4S_(3/2)-->4I_(15/2), and 4F_(9/2)-->4I_(15/2), respectively, were observed. The quadratic dependence of the 525-, 546-, and 657-nm emissions on excitation power indicates that a two-photon absorption process occurs under 975-nm excitation. The high-populated 4I_(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. The intense upconversion luminescence of Er(3+)/Yb(3+) co-doped LSPB glasses may be a potentially useful material for developing upconversion optical devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Raman spectra, infrared spectra and upconversion luminescence spectra were studied, and the effect mechanism of OH- groups on the upconversion luminescence of Er3+-doped oxyhalide tellurite glasses was analyzed. The results show that the phonon energy of lead chloride tellurite (PCT) glass was lower than that of lead fluoride tellurite (PFT) glass, but upconversion luminescence intensity of Er3+-doped PFT glass was higher than that of Er3+-doped PCT glass. The analysis considers that it was attributed mainly to the effect of OH- groups. The lower the absorption coefficient of the OH- groups, the higher the fluorescence lifetime of Er3+, and as a result the higher upconversion luminescence intensity of Er3+. In this work, the effect of OH groups on the upconversion luminescence of Er3+ was bigger than that of the phonon energy. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Er3+ -doped strontium lead bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(1) (t = 2,4,6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 2.95 x 10(-20), Omega(4) = 0-91 X 10(-20), and Omega(6) = 0.36 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) --> I-4(15/2), S-4(3/2) I-4(15/2), and F-4(9/2) --> I-4(15/2) respectively were observed. The upconversion mechanisms are discussed based oil the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. (C) 2004 Published by Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Yb3+/ Er3+-codoped oxychloride germanate glasses have been synthesized by a conventional melting and quenching method. Structural properties were obtained based on Raman-spectra investigation, indicating that PbCl2 plays an important role in the formation of the glass network and has an important influence on the phonon density and the maximum phonon energy. The Judd - Ofelt intensity parameters and quantum efficiencies were calculated based on the Judd - Ofelt theory and lifetime measurements. The enhanced upconversion luminescence intensity of Er3+ with increasing PbCl2 content could not be explained only by the maximum phonon-energy change of the host glasses. For the first time, the effect of PbCl2 addition on phonon density, OH- content, and upconversion luminescence in oxychloride glasses has been discussed and evaluated. The results show that the effect of phonon density and OH- content on upconversion luminescence in oxychloride glasses is much stronger than that of the decrease of the maximum phonon energy. The possible upconversion luminescence mechanisms have also been estimated and are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Effect of fluoride ions introduction on structural, OH- content and up-conversion luminescence properties in Er3+-doped heavy metal oxide glasses have been investigated. Structure was investigated, indicating that fluoride has an important influence on the phonon density, maximum phonon energy of host glasses. With increasing fluoride content, the up-conversion luminescence intensity and quantum efficiencies increase notably, which could not be explained only by the maximum phonon energy change of host glasses. Our results show that, with the introduction of PbF2, the decrease of phonon density and OH- content contributes more to the enhanced up-conversion emissions than that of maximum phonon energy. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To obtain efficient blue upconversion laser glasses, upconversion luminescence and mechanisms of Tm3+/Yb3+-codoped oxyhalide tellurite glasses were investigated under 980nm excitation. The results showed that upconversion blue and red emission intensities of Tm3+ first increase, reach its maximum at TM2O3% =0.1 mol%, and then decrease with increasing Tm2O3 content. The effect of TM2O3 content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm3+. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Yb3+Er3+-codoped chloride-modified germanate-bismuth-lead glasses have been synthesized by the conventional melting and quenching method. Structural and thermal stability properties have been obtained on the basis of the Raman spectra and differential thermal analysis, which indicate that the PbCl2 addition has an important influence on the phonon density of states, maximum phonon energy, and thermal stability of host glasses. The Judd-Ofelt intensity parameters and quantum efficiencies were calculated on the basis of the Judd-Ofelt theory and lifetime measurements. For the 1.53 mu m emission band, the full widths at the half-maximum increase and peak wavelengths are blueshifted with increasing PbCl2 content. Moreover, the effect of the PbCl2 addition on the phonon density of states, OH- content, and upconversion luminescence has been discussed and evaluated. Our results reveal that, with increasing PbCl2 content, the decrease of phonon density and OH- content contributes more to the enhanced upconversion emissions than that of maximum phonon energy. (c) 2005 Optical Society of America

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three kinds of Er3+-doped tellurite glasses with different hydroxyl groups are prepared by the conventional melt-quenching method. Infrared spectra are measured to estimate the exact content of OH- groups in samples. The maximum phonon energy in glasses are obtained by measuring the Raman scattering spectra. The strength parameters Omega(t) (t = 2, 4, 6) for all the samples are calculated and compared. The nonradiative decay rate of the Er3+ I-4(13/2) -> I-4(15/2) transition are calculated for the glass samples with different phonon energy and OH- group contents. Finally, the effect of OH- groups on fluorescence decay rate of Er3+ is analysed, the constant KOH-Er Of TWN, TZPL and TZL glasses are calculated to be 9.2 x 10(-19) cm(4)s(-1), 5.9 x 10(-19) cm(4)s(-1), and 3.5 x 10(-19) cm(4)s(-1), respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Er3+-doped lithium-barium-lead-bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(t) (t = 2, 4, 6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 3.05 x 10(-20) cm(2), Omega(4) = 0.95 x 10(-20) cm(2), and Omega(6) = 0.39 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the intense upconversion processes. The intense upconversion luminescence of Er3+-doped lithium-barium-lead-bismuth glass may be a potentially useful material for developing upconversion optical devices. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Er3+/Yb3+-codoped potassium-barium-strontium-lead-bismuth glasses for developing potential upconversion lasers have been fabricated and characterized. Based on the results of energy transfer efficiency, the optimal Yb3+/Er3+ concentration ratio is found to be 5:1. Intense green and red emissions centered at 525, 546, and 657 run, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Er3+-doped TeO2-WO3 glass was fabricated and characterized by absorption spectrum, fluorescence spectrum, Raman spectrum and stability. The Judd-Ofelt parameter ohm(t)(t = 2, 4, 6) were calculated from the absorption spectrum by the Judd-Ofelt theory. The fluorescence spectrum indicates that the fluorescence width at half-maximum (FWHM) is 66nm. The stimulated emission cross-section of Er3+ in TeO2-WO3 glass at 1532 nm was calculated to be 0.80 x 10(-20) cm(2) by McCumber theory. The phonon energy of TeO2-WO3 glass is found to be 931 cm(-1). The difference between crystallization onset temperature and glass transition temperature Delta T is 112 degrees C. These results show that Er3+-doped TeO2-WO3 glass has higher stability and good spectral properties, which were useful for broadband amplifier. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Effect of Yb2O3 content on upconversion luminescence and mechanisms in Yb3+-sensitized Tm3+-doped oxyhalide tellurite glasses were investigated under 980 nm excitation. Intense blue and relatively weak red upconversion emission centered at 476 and 649nm corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4) of Tm3+, respectively, are simultaneously observed at room temperature. The results show that upconversion blue and red emission intensities of Tm3+ first increase, reach its maximum at Yb2O3% = 3 mol%, and then decrease with increasing Yb2O3 content. The effect of Yb2O3 content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm3+. (c) 2005 Elsevier B.V. All rights reserved.