974 resultados para Rainfall
Resumo:
Uranium-series dated stalagmites from Oman indicate that pluvial conditions prevailed from 6.3 to 10.5, 78 to 82, 120 to 130, 180 to 200 and 300 to 330 kyr B.P.; all of these periods coincide with peak interglacials. Oxygen (δ18O) and hydrogen (δD) isotope ratios of speleothem calcite and fluid inclusions reveal the source of moisture and provide information on the amount of precipitation, respectively. δ18O and δD values of stalagmites deposited during peak interglacials vary between −8 and −4 ‰ (VPDB) and −53 and −20‰ (Vienna Standard Mean Ocean Water [VSMOW]) respectively, whereas modern stalagmites range from −2.6 to −1.1‰ in δ18O (VPDB) and −7.6 and −3.3‰ in δD (VSMOW), respectively. The growth and isotopic records indicate that during peak interglacial periods, the limit of the monsoon rainfall was shifted far north of its present location and each pluvial period was coinciding with an interglacial stage of the marine oxygen isotope record.
The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century
Resumo:
The boreal summer Asian monsoon has been evaluated in 25 Coupled Model Intercomparison Project-5 (CMIP5) and 22 CMIP3 GCM simulations of the late 20th Century. Diagnostics and skill metrics have been calculated to assess the time-mean, climatological annual cycle, interannual variability, and intraseasonal variability. Progress has been made in modeling these aspects of the monsoon, though there is no single model that best represents all of these aspects of the monsoon. The CMIP5 multi-model mean (MMM) is more skillful than the CMIP3 MMM for all diagnostics in terms of the skill of simulating pattern correlations with respect to observations. Additionally, for rainfall/convection the MMM outperforms the individual models for the time mean, the interannual variability of the East Asian monsoon, and intraseasonal variability. The pattern correlation of the time (pentad) of monsoon peak and withdrawal is better simulated than that of monsoon onset. The onset of the monsoon over India is typically too late in the models. The extension of the monsoon over eastern China, Korea, and Japan is underestimated, while it is overestimated over the subtropical western/central Pacific Ocean. The anti-correlation between anomalies of all-India rainfall and Niño-3.4 sea surface temperature is overly strong in CMIP3 and typically too weak in CMIP5. For both the ENSO-monsoon teleconnection and the East Asian zonal wind-rainfall teleconnection, the MMM interannual rainfall anomalies are weak compared to observations. Though simulation of intraseasonal variability remains problematic, several models show improved skill at representing the northward propagation of convection and the development of the tilted band of convection that extends from India to the equatorial west Pacific. The MMM also well represents the space-time evolution of intraseasonal outgoing longwave radiation anomalies. Caution is necessary when using GPCP and CMAP rainfall to validate (1) the time-mean rainfall, as there are systematic differences over ocean and land between these two data sets, and (2) the timing of monsoon withdrawal over India, where the smooth southward progression seen in India Meteorological Department data is better realized in CMAP data compared to GPCP data.
Resumo:
Climate change is expected to bring warmer temperatures, changes to rainfall patterns, and increased frequency of extreme weather. Projections of climate impacts on feed crops show that there will likely be opportunities for increased productivity as well as considerable threats to crop productivity in different parts of the world over the next 20 to 50 years. On balance, we anticipate substantial risks to the volume, volatility, and quality of animal feed supply chains from climate change. Adaptation strategies and investment informed by high quality research at the interface of crop and animal science will be needed, both to respond to climate change and to meet the increasing demand for animal products expected over the coming decades.
Resumo:
Peat soils consist of poorly decomposed plant detritus, preserved by low decay rates, and deep peat deposits are globally significant stores in the carbon cycle. High water tables and low soil temperatures are commonly held to be the primary reasons for low peat decay rates. However, recent studies suggest a thermodynamic limit to peat decay, whereby the slow turnover of peat soil pore water may lead to high concentrations of phenols and dissolved inorganic carbon. In sufficient concentrations, these chemicals may slow or even halt microbial respiration, providing a negative feedback to peat decay. We document the analysis of a simple, one-dimensional theoretical model of peatland pore water residence time distributions (RTDs). The model suggests that broader, thicker peatlands may be more resilient to rapid decay caused by climate change because of slow pore water turnover in deep layers. Even shallow peat deposits may also be resilient to rapid decay if rainfall rates are low. However, the model suggests that even thick peatlands may be vulnerable to rapid decay under prolonged high rainfall rates, which may act to flush pore water with fresh rainwater. We also used the model to illustrate a particular limitation of the diplotelmic (i.e., acrotelm and catotelm) model of peatland structure. Model peatlands of contrasting hydraulic structure exhibited identical water tables but contrasting RTDs. These scenarios would be treated identically by diplotelmic models, although the thermodynamic limit suggests contrasting decay regimes. We therefore conclude that the diplotelmic model be discarded in favor of model schemes that consider continuous variation in peat properties and processes.
Resumo:
Human-made transformations to the environment, and in particular the land surface, are having a large impact on the distribution (in both time and space) of rainfall, upon which all life is reliant. Focusing on precipitation, soil moisture and near-surface temperature, we compare data from Phase 5 of the Climate Modelling Intercomparison Project (CMIP5), as well as blended observational–satellite data, to see how the interaction between rainfall and the land surface differs (or agrees) between the models and reality, at daily timescales. As expected, the results suggest a strong positive relationship between precipitation and soil moisture when precipitation leads and is concurrent with soil moisture estimates, for the tropics as a whole. Conversely a negative relationship is shown when soil moisture leads rainfall by a day or more. A weak positive relationship between precipitation and temperature is shown when either leads by one day, whereas a weak negative relationship is shown over the same time period between soil moisture and temperature. Temporally, in terms of lag and lead relationships, the models appear to be in agreement on the overall patterns of correlation between rainfall and soil moisture. However, in terms of spatial patterns, a comparison of these relationships across all available models reveals considerable variability in the ability of the models to reproduce the correlations between precipitation and soil moisture. There is also a difference in the timings of the correlations, with some models showing the highest positive correlations when precipitation leads soil moisture by one day. Finally, the results suggest that there are 'hotspots' of high linear gradients between precipitation and soil moisture, corresponding to regions experiencing heavy rainfall. These results point to an inability of the CMIP5 models to simulate a positive feedback between soil moisture and precipitation at daily timescales. Longer timescale comparisons and experiments at higher spatial resolutions, where the impact of the spatial heterogeneity of rainfall on the initiation of convection and supply of moisture is included, would be expected to improve process understanding further.
Resumo:
Robust and physically understandable responses of the global atmospheric water cycle to a warming climate are presented. By considering interannual responses to changes in surface temperature (T), observations and AMIP5 simulations agree on an increase in column integrated water vapor at the rate 7 %/K (in line with the ClausiusClapeyron equation) and of precipitation at the rate 2-3 %/K (in line with energetic constraints). Using simple and complex climate models, we demonstrate that radiative forcing by greenhouse gases is currently suppressing global precipitation (P) at ~ -0.15 %/decade. Along with natural variability, this can explain why observed trends in global P over the period 1988-2008 are close to zero. Regional responses in the global water cycle are strongly constrained by changes in moisture fluxes. Model simulations show an increased moisture flux into the tropical wet region at 900 hPa and an enhanced outflow (of smaller magnitude) at around 600 hPa with warming. Moisture transport explains an increase in P in the wet tropical regions and small or negative changes in the dry regions of the subtropics in CMIP5 simulations of a warming climate. For AMIP5 simulations and satellite observations, the heaviest 5-day rainfall totals increase in intensity at ~15 %/K over the ocean with reductions at all percentiles over land. The climate change response in CMIP5 simulations shows consistent increases in P over ocean and land for the highest intensities, close to the Clausius-Clapeyron scaling of 7 %/K, while P declines for the lowest percentiles, indicating that interannual variability over land may not be a good proxy for climate change. The local changes in precipitation and its extremes are highly dependent upon small shifts in the large-scale atmospheric circulation and regional feedbacks.
Resumo:
An investigation is presented of a quasi-stationary convective system (QSCS) which occurred over the UK Southwest Peninsula on 21 July 2010. This system was remarkably similar in its location and structure to one which caused devastating flash flooding in the coastal village of Boscastle, Cornwall on 16 August 2004. However, in the 2010 case rainfall accumulations were around four times smaller and no flooding was recorded. The more extreme nature of the Boscastle case is shown to be related to three factors: (1) higher rain rates, associated with a warmer and moister tropospheric column and deeper convective clouds; (2) a more stationary system, due to slower evolution of the large-scale flow; and (3) distribution of the heaviest precipitation over fewer river catchments. Overall, however, the synoptic setting of the two events was broadly similar, suggesting that such conditions favour the development of QSCSs over the Southwest Peninsula. A numerical simulation of the July 2010 event was performed using a 1.5-km grid length configuration of the Met Office Unified Model. This reveals that convection was repeatedly initiated through lifting of low-level air parcels along a quasi-stationary coastal convergence line. Sensitivity tests are used to show that this convergence line was a sea breeze front which temporarily stalled along the coastline due to the retarding influence of an offshore-directed background wind component. Several deficiencies are noted in the 1.5-km model’s representation of the storm system, including delayed convective initiation; however, significant improvements are observed when the grid length is reduced to 500 m. These result in part from an improved representation of the convergence line, which enhances the associated low-level ascent allowing air parcels to more readily reach their level of free convection. The implications of this finding for forecasting convective precipitation are discussed.
Resumo:
Analysis of 20th century simulations of the High resolution Global Environment Model (HiGEM) and the Third Coupled Model Intercomparison Project (CMIP3) models shows that most have a cold sea-surface temperature (SST) bias in the northern Arabian Sea during boreal winter. The association between Arabian Sea SST and the South Asian monsoon has been widely studied in observations and models, with winter cold biases known to be detrimental to rainfall simulation during the subsequent monsoon in coupled general circulation models (GCMs). However, the causes of these SST biases are not well understood. Indeed this is one of the first papers to address causes of the cold biases. The models show anomalously strong north-easterly winter monsoon winds and cold air temperatures in north-west India, Pakistan and beyond. This leads to the anomalous advection of cold, dry air over the Arabian Sea. The cold land region is also associated with an anomalously strong meridional surface temperature gradient during winter, contributing to the enhanced low-level convergence and excessive precipitation over the western equatorial Indian Ocean seen in many models.
Resumo:
The enhanced radar return associated with melting snow, ‘the bright band’, can lead to large overestimates of rain rates. Most correction schemes rely on fitting the radar observations to a vertical profile of reflectivity (VPR) which includes the bright band enhancement. Observations show that the VPR is very variable in space and time; large enhancements occur for melting snow, but none for the melting graupel in embedded convection. Applying a bright band VPR correction to a region of embedded convection will lead to a severe underestimate of rainfall. We revive an earlier suggestion that high values of the linear depolarisation ratio (LDR) are an excellent means of detecting when bright band contamination is occurring and that the value of LDR may be used to correct the value of Z in the bright band.
Resumo:
With many operational centers moving toward order 1-km-gridlength models for routine weather forecasting, this paper presents a systematic investigation of the properties of high-resolution versions of the Met Office Unified Model for short-range forecasting of convective rainfall events. The authors describe a suite of configurations of the Met Office Unified Model running with grid lengths of 12, 4, and 1 km and analyze results from these models for a number of convective cases from the summers of 2003, 2004, and 2005. The analysis includes subjective evaluation of the rainfall fields and comparisons of rainfall amounts, initiation, cell statistics, and a scale-selective verification technique. It is shown that the 4- and 1-km-gridlength models often give more realistic-looking precipitation fields because convection is represented explicitly rather than parameterized. However, the 4-km model representation suffers from large convective cells and delayed initiation because the grid length is too long to correctly reproduce the convection explicitly. These problems are not as evident in the 1-km model, although it does suffer from too numerous small cells in some situations. Both the 4- and 1-km models suffer from poor representation at the start of the forecast in the period when the high-resolution detail is spinning up from the lower-resolution (12 km) starting data used. A scale-selective precipitation verification technique implies that for later times in the forecasts (after the spinup period) the 1-km model performs better than the 12- and 4-km models for lower rainfall thresholds. For higher thresholds the 4-km model scores almost as well as the 1-km model, and both do better than the 12-km model.
Resumo:
Using identical observed meteorology for lateral boundary conditions, the Regional Atmospheric Modeling System was integrated for July-August 1973 for south Florida. Three experiments were performed-one using the observed 1973 landscape, another the 1993 landscape, and the third the 1900 landscape, when the region was close to its natural state. Over the 2-month period, there was a 9% decrease in rainfall averaged over south Florida with the 1973 landscape and an 11% decrease with the 1993 landscape, as compared with the model results when the 1900 landscape is used. The limited available observations of trends in summer rainfall over this region are consistent with these trends.
Resumo:
It is becoming increasingly important to be able to verify the spatial accuracy of precipitation forecasts, especially with the advent of high-resolution numerical weather prediction (NWP) models. In this article, the fractions skill score (FSS) approach has been used to perform a scale-selective evaluation of precipitation forecasts during 2003 from the Met Office mesoscale model (12 km grid length). The investigation shows how skill varies with spatial scale, the scales over which the data assimilation (DA) adds most skill, and how the loss of that skill is dependent on both the spatial scale and the rainfall coverage being examined. Although these results come from a specific model, they demonstrate how this verification approach can provide a quantitative assessment of the spatial behaviour of new finer-resolution models and DA techniques.
Resumo:
Climate change is expected to increase winter rainfall and flooding in many extratropical regions as evaporation and precipitation rates increase, storms become more intense and storm tracks move polewards. Here, we show how changes in stratospheric circulation could play a significant role in future climate change in the extratropics through an additional shift in the tropospheric circulation. This shift in the circulation alters climate change in regional winter rainfall by an amount large enough to significantly alter regional climate change projections. The changes are consistent with changes in stratospheric winds inducing a change in the baroclinic eddy growth rate across the depth of the troposphere. A change in mean wind structure and an equatorward shift of the tropospheric storm tracks relative to models with poor stratospheric resolution allows coupling with surface climate. Using the Atlantic storm track as an example, we show how this can double the predicted increase in extreme winter rainfall over Western and Central Europe compared to other current climate projections
Resumo:
In this study a gridded hourly 1-km precipitation dataset for a meso-scale catchment (4,062 km2) of the Upper Severn River, UK was constructed using rainfall radar data to disaggregate a daily precipitation (rain gauge) dataset. The dataset was compared to an hourly precipitation dataset created entirely from rainfall radar data. Results found that when assessed against gauge readings and as input to the Lisflood-RR hydrological model, the rain gauge/radar disaggregated dataset performed the best suggesting that this simple method of combining rainfall radar data with rain gauge readings can provide temporally detailed precipitation datasets for calibrating hydrological models.
Resumo:
Many reasons are being advanced for the current ‘food crisis’ including financial speculation,increased demand for grains, export bans on selected foodstuffs, inadequate grain stocks, higher oil prices, poor harvests and the use of crop lands for the production of biofuels. This paper reviews the present knowledge of recorded impacts of climate change and variability on crop production, in order to estimate its contribution to the current situation. Many studies demonstrate increased regional temperatures over the last 40 years (often through greater increases in minimum rather than maximum temperatures), but effects on crop yields are mixed. Distinguishing climate effects from changes in yield resulting from improved crop management and genotypes is difficult, but phenological changes affecting sowing, maturity and disease incidence are emerging. Anthropogenic factors appear to be a significant contributory factor to the observed decline in rainfall in southwestern and southeastern Australia, which reduced tradable wheat grain during 2007. Indirect effects of climate change through actions to mitigate or adapt to anticipated changes in climate are also evident. The amount of land diverted from crop production to biofuel production is small but has had a disproportionate effect on tradable grains from the USA. Adaptation of crop production practices and other components of the food system contributing to food security in response to variable and changing climates have occurred, but those households without adequate livelihoods are most in danger of becoming food insecure. Overall, we conclude that changing climate is a small contributor to the current food crisis but cannot be ignored.