998 resultados para Rail Edge Stress
Resumo:
Smellmelon, an annual invasive weed of soybean production fields in the north of Iran, reproduces and spreads predominately through seed production. This makes seed bank survival and successful germination essential steps in the invasive process. To evaluate the potential of Smellmelon to invade water-stressed environments, laboratory studies were conducted to investigate the effect of desiccation and salinity at different temperatures on seed germination and seedling growth of Cucumis melo. Seeds were incubated at 25, 30, 35 and 40 ºC in the darkness in a solution (0, -0.2, -0.4, -0.6, -0.8, 1 and 1.2 MPa) of a salt (NaCl), and in a solution (0, -2, -4, -6, -8, -10, -12 bar) of PEG-6000 (Polyethylene glycol), in two separate experiments. The results showed that the highest percentage and rate of germination occurred at 35 ºC in salt concentrations of 0, -0.2, -0.4 MPa and PEG concentrations of 0, -2, -4 bar. Increasing the concentration of salt (NaCl) and PEG limited germination, seedling growth and water uptake but increased the sodium content in the seedlings. No significant difference was observed among 0, -0.2 and -0.4 MPa of NaCl and among 0, -2 and -4 bar of PEG concentration at 35 ºC. The negative effects of PEG were more than those of NaCl on germination percentage and germination rate. Increased stress levels lead to reduction of root and shoot length, and SVL of seedlings. Na+ content of seedling decreased with limited seedling growth of C. melo.
Resumo:
The use of herbicides, even in tolerant crops, can cause stress evidenced by increase phytotoxicity affecting growth and development. The objectives of this study were to evaluate herbicides effect from different mechanisms of action in photosynthetic and oxidative stress parameters, as well visual phytotoxicity and wild radish control in wheat crop, cultivar Quartzo. Two trials were conducted where the first one evaluated the photosynthetic parameters on wheat plants in two seasons collection, following the application of herbicides bentazon, clodinafop, iodosulfuron, metribuzin, metsulfuron and 2,4-D; and the second one evaluated wild radish (Raphanus sativus) control, wheat phytotoxicity and yield due to bentazon, iodosulfuron, metribuzin, metsulfuron and 2,4-D herbicides application. Photosynthetic rate, stomatal conductance and transpiration were negatively affected by metribuzin, metsulfuron and 2,4-D herbicides at 24 and 120 HAS (hours after spraying) compared to control. Oxidative stress was similar or lower to control, when herbicide was applied and, in general, there was no difference between application times. Lipid peroxidation, catalase activity and phenols were higher in the first collection time. The application of herbicides iodosulfuron and 2,4-D reduces chlorophylls and carotenoids in wheat. Herbicides bentazon, iodosulfuron, metribuzin, metsulfuron and 2,4-D are selective to wheat, cultivar Quartzo and do not affect wheat yield. 2,4-D, metribuzin and iodosulfuron are more efficient for wild radish control.
Resumo:
Considering the performance of CAM epiphytes under high levels of radiation or in shaded environments, with growth rate proportional to light intensity, the objective of this work was to evaluate the effects of long-term light stress on the growth of a Brazilian epiphytic orchid, Cattleya forbesii Lindl. X Laelia tenebrosa Rolfe. Two groups of plants were used in the first experiment, one under 90% (@ 1,650 µmol.m-2.s-1) of Photosynthetically Active Radiation (PAR) and the other maintained under 22.5% (@ 400 µmol.m-2.s-1). In the second experiment the diffusive resistance, transpiration rate and fluorescence levels were monitored for plants that were under 22.5% of PAR, under 90% and plants transferred from 22.5 to 90%. Our results show that light intensity interfered with growth and development of this orchid. Data on the changes in pseudobulb volume throughout the time course of growth suggest that water and reserves stored in the back shoots are translocated to the current shoot. Regarding stomatal resistance, plants under 22.5% of PAR reached a largest stomatal aperture during the night, whereas those under 90% only after dawn. After transfer from 22.5% PAR to 90% PAR the ratio of Fv/Fm decreased from approximately 0.8 to 0.7. This suggests the limitation of photoprotection mechanisms in the leaf and the results observed after the transfer of plants from 22.5% to 90% reinforce the possibility that a photoinhibition is reflected in a decrease in growth rate.
Resumo:
Heat shock factors (HSFs) are an evolutionarily well conserved family of transcription factors that coordinate stress-induced gene expression and direct versatile physiological processes in eukaryote organisms. The essentiality of HSFs for cellular homeostasis has been well demonstrated, mainly through HSF1-induced transcription of heat shock protein (HSP) genes. HSFs are important regulators of many fundamental processes such as gametogenesis, metabolic control and aging, and are involved in pathological conditions including cancer progression and neurodegenerative diseases. In each of the HSF-mediated processes, however, the detailed mechanisms of HSF family members and their complete set of target genes have remained unknown. Recently, rapid advances in chromatin studies have enabled genome-wide characterization of protein binding sites in a high resolution and in an unbiased manner. In this PhD thesis, these novel methods that base on chromatin immunoprecipitation (ChIP) are utilized and the genome-wide target loci for HSF1 and HSF2 are identified in cellular stress responses and in developmental processes. The thesis and its original publications characterize the individual and shared target genes of HSF1 and HSF2, describe HSF1 as a potent transactivator, and discover HSF2 as an epigenetic regulator that coordinates gene expression throughout the cell cycle progression. In male gametogenesis, novel physiological functions for HSF1 and HSF2 are revealed and HSFs are demonstrated to control the expression of X- and Y-chromosomal multicopy genes in a silenced chromatin environment. In stressed human cells, HSF1 and HSF2 are shown to coordinate the expression of a wide variety of genes including genes for chaperone machinery, ubiquitin, regulators of cell cycle progression and signaling. These results highlight the importance of cell type and cell cycle phase in transcriptional responses, reveal the myriad of processes that are adjusted in a stressed cell and describe novel mechanisms that maintain transcriptional memory in mitotic cell division.
Resumo:
This work investigated how richness, abundance, composition and structure of woody and herbaceous vegetation were altered by the proximity of an edge between Araucaria forest and pasture in South Brazil. Herbaceous and woody species including seedlings were surveyed in 42 plots of 5 × 5 m randomly placed at the following distances: 5 and 50 m from the edge into the pasture and 0, 25, 50, 100 and 250 m from the edge into the forest. There was a significant increase in vegetation cover, richness and abundance of woody species, woody seedlings and herbaceous plants at the edge (0 m). These variables, in general, decreased from 25 to 50 m from the edge into the forest in comparison to the forest interior. Few seedlings of woody plants were able to establish themselves in the pasture. There were continuous changes in species composition that occurred in the studied gradient due to the invasion of light-demanding species and the disappearance of some shade-tolerant species at the edge. In conclusion, the forest edge studied generated changes in the plant community that extended up to 50 m into the forest.
Resumo:
Shallow coastal areas are dynamic habitats that are affected by a variety of abiotic and biotic factors. In addition to the natural environmental stress, estuarine and coastal seagrass ecosystems are exposed to effects of climate change and other anthropogenic impacts. In this thesis the effect of different abiotic (shading stress, salinity and temperature) and biotic stressors (presence of co-occurring species) and different levels and combinations of stressors on the performance and survival of eelgrass (Zostera marina) was assessed. To investigate the importance of scale for stress responses, varying levels of biological organization (genotype, life stage, population and plant community) were studied in field and aquarium experiments. Light limitation, decreased salinity and increased temperature affected eelgrass performance negatively in papers I, II and III, respectively. While co-occurring plant species had no notable effect on eelgrass in paper IV, the presence of eelgrass increased the biomass of Potamogeton perfoliatus. The findings in papers II and III confirmed that more extreme levels of salinity and temperature had stronger impacts on plant performance compared to intermediate levels, but intermediate levels also had more severe effects on plants when they were exposed to several stressors, as illustrated in paper II. Thus, multiple stressors had negative synergetic effects. The results in papers I, II and III indicate that future changes in light climate, salinity and temperature can have serious impacts on eelgrass performance and survival. Stress responses were found to vary among genotypes, life stages and populations in papers I, II and III, respectively, emphasizing the importance of study scale. The results demonstrate that while stress in general affects seagrass productivity negatively, the severity of effects can vary substantially depending on the studied scale or level of biological organization. Eelgrass genotypes can differ in their stress and recovery processes, as observed in paper I. In paper II, eelgrass seedlings were less prone to abiotic stress compared to adult plants, but stress also decreased their survival considerably. This indicates that recruitment and re-colonization through seeds might be threatened in the future. Variation among population responses observed in paper III indicates that long-term local adaptation under differing selection pressures has caused divergence in salinity tolerance between Baltic eelgrass populations. This variability in stress tolerance observed in papers I and III suggests that some eelgrass genotypes and populations have a better capacity to adapt to changes and survive in a changing environment. Multiple stressors and biological level-specific responses demonstrate the uncertainty in predicting eelgrass responses in a changing environment. As eelgrass populations may differ in their stress tolerance both within and across regions, conservation strategies at both local and regional scales are urgently needed in order to ensure the survival of these important ecosystems.
Resumo:
Bromeliad seedlings are rarely found on sandy coastal plains (restinga), limited, probably, by stressful conditions and/or specific abiotic requirements for germination. The effect of water stress on rate, time, synchronicity and spreading of germination was evaluated here for three terrestrial bromeliads from the restinga of Maricá using osmotic solutions of polyethyleneglicol 6000 (PEG 6000), from 0.0 to -0.26 MPa for 30 days. Water stress induced by PEG lowered rate and increased time and synchronicity values, besides the number of daily events of bromeliad seed germination, under water potentials between 0.00 to -0.14 MPa. No seeds germinated under water potentials lower than -0.14 MPa. These results reinforce a constant and/or high moisture requirement for bromeliad seeds to germinate. We conclude that bromeliads are not able to act as pioneer plants through germination outside the vegetation islands of the restinga of Maricá, due to the inability of seeds to germinate under lower water potential.
Resumo:
Thoroughbred fillies were divided into three groups according to age: group 1, 7 fillies aged 1 to 2 years (G1) starting the training program; group 2, 9 fillies aged 2 to 3 years (G2) in a full training program; group 3, 8 older fillies 3 to 4 years of age (G3) training and racing. Blood samples were collected weekly from July to December. Cortisol was quantified using a solid phase DPC kit. The intra- and interassay coefficients of variation were 12.5% and 15.65% and sensitivity was 1.9 ± 0.2 nmol/l. The semester average of cortisol levels varied between groups: G1 = 148.8 ± 6.7, G2 = 125.7 ± 5.8, G3 = 101.1 ± 5.4 nmol/l, with G3 differing statistically from the other groups. The lower cortisol levels observed in the older fillies lead us to propose that the stress stimulus, when maintained over a long period of time, may become chronic and result in a reduction of hypophyseal corticotropin-releasing hormone receptors. The secretion of endogenous opioids may also lead to low serum cortisol levels.
Resumo:
Immunohistochemistry was used to evaluate the effects of neonatal handling and aversive stimulation during the first 10 days of life on the number of corticotrophs in the anterior lobe of the pituitary of 11-day-old male Wistar rats. Since adult rats handled during infancy respond with reduced corticosterone secretion in response to stressors and with less behavior inhibition in novel environments, we assumed that neonatal stimulation could affect pituitary morphology during this critical period of cell differentiation. Three groups of animals were studied: intact (no manipulation, N = 5), handled (N = 5) and stimulated (submitted to 3 different aversive stimuli, N = 5). The percentage of ACTH-immunoreactive cells in the anterior lobe of the pituitary (number of ACTH-stained cells divided by total number of cells) was determined by examining three slices per pituitary in which a minimum of 200 cells were counted by two independent researchers. Although animals during the neonatal period are less reactive to stress-like stimulation in terms of ACTH and corticosterone secretion, results showed that the relative number of ACTH-stained cells of neonatal handled (0.25 ± 0.01) and aversive stimulated (0.29 ± 0.03) rats was not significantly different from intact (0.30 ± 0.03) animals. Neonatal stimulation may have a differential effect on the various subpopulations of corticotroph cells in the anterior pituitary
Resumo:
Prostaglandins are natural fatty acid derivatives with diverse physiological effects, including immune function and the control of cell growth. While the action of prostaglandins in the induction of stress proteins in vertebrate cells is well documented, their functions in invertebrate cells have been poorly investigated. The purpose of the present study was to investigate the effect of prostaglandin A1 (PGA1; 0.25, 1.25 and 12.5 µg/ml) on protein synthesis during the growth of Aedes albopictus cells. We found that PGA1 stimulates the synthesis of several polypeptides with molecular masses of 87, 80, 70, 57, 29, 27 and 23 kDa in Aedes albopictus cells. When the proteins induced by PGA1 and those induced by heat treatment were compared by polyacrylamide gel electrophoresis, PGA1 was found to induce the stress proteins. The HSP70 family and the low-molecular weight polypeptides (29 and 27 kDa, respectively) were induced by PGA1 in the lag phase. We also observed that PGA1 is able to induce a 23-kDa polypeptide independently of the growth phase of the cell
Resumo:
We investigated whether chronic stress applied from prepuberty to full sexual maturity interferes with spermatogenic and androgenic testicular functions. Male Wistar rats (40 days old) were immobilized 6 h a day for 60 days. Following immobilization, plasma concentrations of corticosterone and prolactin increased 135% and 48%, respectively, while plasma luteinizing hormone and testosterone presented a significant decrease of 29% and 37%, respectively. Plasma concentration of follicle-stimulating hormone was not altered in stressed rats. Chronic stress reduced the amount of mature spermatids in the testis by 16% and the spermatozoon concentration in the cauda epididymidis by 32%. A 17% reduction in weight and a 42% decrease in DNA content were observed in the seminal vesicle of immobilized rats but not in its fructose content. The growth and secretory activity of the ventral prostate were not altered by chronic stress.
Resumo:
The present study investigated the effect of repeated stress applied to female rats on memory evaluated by three behavioral tasks: two-way shuttle avoidance, inhibitory avoidance and habituation to an open field. Repeated stress had different effects on rat behavior when different tasks were considered. In the two-way active avoidance test the stressed animals presented memory of the task, but their memory scores were impaired when compared to all other groups. In the habituation to the open field, only the control group showed a significant difference in the number of rearings between training and testing sessions, which is interpreted as an adequate memory of the task. In the handled and chronically stressed animals, on the other hand, no memory was observed, suggesting that even a very mild repeated stress would be enough to alter habituation to this task. The performance in the inhibitory avoidance task presented no significant differences between groups. The findings suggest that repeated restraint stress might induce cognitive impairments that are dependent on the task and on stress intensity.
Resumo:
Early stimulation has been shown to produce long-lasting effects in many species. Prenatal exposure to some strong stressors may affect development of the nervous system leading to behavioral impairment in adult life. The purpose of the present work was to study the postnatal harmful effects of exposure to variable mild stresses in rats during pregnancy. Female Holtzman rats were submitted daily to one session of a chronic variable stress (CVS) during pregnancy (prenatal stress; PS group). Control pregnant rats (C group) were undisturbed. The pups of PS and C dams were weighed and separated into two groups 48 h after delivery. One group was maintained with their own dams (PS group, N = 70; C group, N = 36) while the other PS pups were cross-fostered with C dams (PSF group, N = 47) and the other C pups were cross-fostered with PS dams (CF group, N = 58). Pups were undisturbed until weaning (postnatal day 28). The male offspring underwent motor activity tests (day 28), enriched environment tests (day 37) and social interaction tests (day 42) in an animal activity monitor. Body weight was recorded on days 2, 28 and 60. The PS pups showed lower birth weight than C pups (Duncan's test, P<0.05). The PS pups suckling with their stressed mothers displayed greater preweaning mortality (C: 23%, PS: 60%; c2 test, P<0.05) and lower body weight than controls at days 28 and 60 (Duncan's test, P<0.05 and P<0.01, respectively). The PS, PSF and CF groups showed lower motor activity scores than controls when tested at day 28 (Duncan's test, P<0.01 for PS group and P<0.05 for CF and PSF groups). In the enriched environment test performed on day 37, between-group differences in total motor activity were not detected; however, the PS, CF and PSF groups displayed less exploration time than controls (Duncan's test, P<0.05). Only the PS group showed impaired motor activity and impaired social behavior at day 42 (Duncan's test, P<0.05). In fact, CVS treatment during gestation plus suckling with a previously stressed mother caused long-lasting physical and behavioral changes in rats. Cross-fostering PS-exposed pups to a dam which was not submitted to stress counteracted most of the harmful effects of the treatment. It is probable that prenatal stress plus suckling from a previously stressed mother can induce long-lasting changes in the neurotransmitter systems involved in emotional regulation. Further experiments using neurochemical and pharmacological approaches would be interesting in this model.
Resumo:
All aerobic organisms have to deal with the toxicity of oxygen. Oxygen enables more efficient energy production compared to anaerobic respiration or fermentation, but at the same time reactive oxygen species (ROS) are being formed. ROS can also be produced by external factors such as UV-radiation and contamination. ROS can cause damage to biomolecules such as DNA, lipids and proteins and organisms try to keep the damage as small as possible by repairing biomolecules and metabolizing ROS. All ROS are not harmful, because they are used as signaling molecules. To cope against ROS organism have an antioxidant (AOX) system which consists both enzymatic and non-enzymatic AOX defense. Some AOX are produced by the organism itself and some are gained via diet. In this thesis I studied environmentally caused changes in the redox regulation of different wild vertebrate animals to gain knowledge on the temporal, spatial and pollution-derived-effects on the AOX systems. As study species I used barn swallow, ringed seal and the Baltic salmon. For the barn swallow the main interest was the seasonal fluctuation in the redox regulation and its connection to migration and breeding. The more contaminated ringed seals of the Baltic Sea were compared to seals from cleaner Svalbard to investigate whether they suffered from contaminant induced oxidative stress. The regional and temporal variation in redox regulation and regional variation in mRNA and protein expressions of Baltic salmon were studied to gain knowledge if the salmon from different areas are equally stressed. As a comparative aspect the redox responses of these different species were investigated to see which parts of the AOX system are substantial in which species. Certain parts of AOX system were connected to breeding and others to migration in barn swallows, there was also differences in biotransformation between birds caught from Africa and Finland. The Baltic ringed seal did not differ much from the seals from Svalbard, despite the difference in contaminant load. A possible explanation to this could be the enhanced AOX mechanisms against dive-associated oxidative stress in diving air-breathing animals, which also helps to cope with ROS derived from other sourses. The Baltic salmon from Gulf of Finland (GoF) showed higher activities in their AOX defense enzymes and more oxidative damage than fish from other areas. Also on mRNA and proteomic level, stress related metabolic changes were most profound in in the fish from GoF. Mainly my findings on species related differences followed the pattern of mammals showing highest activities and least damage and birds showing lower activities and most damage, fish being intermediate. In general, the glutathione recycling-related enzymes and the ratio of oxidized and reduced glutathione seemed to be the most affected parameters in all of the species.
Resumo:
It is well known that essential hypertension evolves in most patients with "near normal" levels of plasma renin activity. However, these levels appear to be responsible for the high levels of arterial pressure because they are normalized by the administration of angiotensin II converting inhibitors or angiotensin receptor antagonist. In experimental animals, hypertension can be induced by the continuous intravenous infusion of small doses of angiotensin II that are not sufficient to evoke an immediate pressor response. However, this condition resembles the characteristics of essential hypertension because the high levels of blood pressure exist with normal plasma levels of angiotensin II. It is suggested that small amounts of angiotensin whose plasma levels are inappropriate for the existing size of extracellular volume stimulate oxidative stress which binds nitric oxide forming peroxynitrite. The latter compound oxidizes arachidonic acid producing isoprostaglandin F2a (an isoprostane) which is characterized by a strong antinatriuretic vasoconstrictor renal effect. In this chain of reactions the vasoconstrictor effects derived from oxygen quenching of nitric oxide and increased isoprostane synthesis could explain how hypertension is maintained with normal plasma levels of renin.