960 resultados para RINSE ADHESIVE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the ability of endotoxin to diffuse through dentinal tubules towards the cement and to observe the period of time needed for it to reach the external root surface. Thirty single-rooted human teeth had their crowns and apices removed in order to standardize the root length to 15 mm. Teeth were instrumented until #30 K-file and made externally impermeable with epoxy adhesive, leaving 10 mm of the exposed root (middle third). The specimens were placed in plastic vials and irradiated (60Co gamma-rays). Then, they were divided into 2 groups (n = 15): G1) Escherichia coli endotoxin was inoculated into the root canal of the specimens and 1 ml of pyrogen-free water was put in the tubes; G2) (control): pyrogen-free water was inoculated into the root canals and 1 ml of pyrogen-free water was put in each tube. After 30 min, 2 h, 6 h, 12 h, 24 h, 48 h, 72 h and 7 days, the water of the tubes was removed and replaced. The removed aliquot was tested for the presence of endotoxin. Considering that the endotoxin is a B-lymphocyte polyclonal activator, at each experimental period, B-lymphocyte culture was stimulated with a sample of water removed from each tube and antibody (IgM) production was detected by ELISA technique. The results of IgM production were higher in groups of 24 h, 48 h, 72 h and 7 days in relation to the other studied groups, with statistically significant differences (ANOVA and Tukey's test p < 0.05). Endotoxin was able to diffuse through the dentinal tubules towards the cement, reaching the external root surface after the period of 24 h.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: This study tested the hypothesis that the tribochemical silica coating on ceramic surfaces increases the bond strength of resin cement to a glass-infiltrated zirconium-based ceramic. Materials and Methods: Fifteen blocks of In-Ceram Zirconia from CEREC InLab (5 per group) and 15 composite blocks (Z-250) 5 mm x 5 mm x 4 mm were made. The ceramic surfaces were polished, and the blocks were divided into three groups: (1) airborne abrasion with 110-μm aluminum oxide particles; (2) Rocatec system, tribochemical silica coating; and (3) CoJet system, tribochemical silica coating. The ceramic blocks were cemented to the composite blocks using Panavia F according to the manufacturer's specifications. All samples were stored in 37°C distilled water for 7 days and later sectioned in two axes using a diamond disk under cooling to obtain specimens with a cross-sectional area of approximately 1 mm2 (n = 45). Each specimen was then attached with cyanoacrylate glue to an adapted device for the microtensile test, which was carried out on a universal testing machine. Results: The results were subjected to ANOVA and Tukey's test. Group 2 (23.0 ± 6.7 MPa) and group 3 (26.8 ± 7.4 MPa) showed greater bond strength than group 1 (15.1 ± 5.3 MPa). There was no significant difference between groups 2 and 3. All failures were in the adhesive zone. Conclusion: The hypothesis was confirmed - the tribochemical systems increased the bond strength between Panavia F and In-Ceram Zirconia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microwave energy has been used as an alternative method for disinfection and sterilization of dental prostheses. This study evaluated the influence of microwave treatment on dimensional accuracy along the posterior palatal border of maxillary acrylic resin denture bases processed by water-bath curing. Thirty maxillary acrylic bases (3-mm-thick) were made on cast models with Clássico acrylic resin using routine technique. After polymerization and cooling, the sets were deflasked and the bases were stored in water for 30 days. Thereafter, the specimens were assigned to 3 groups (n=10), as follows: group I (control) was not submitted to any disinfection cycle; group II was submitted to microwave disinfection for 3 min at 500 W; and in group III microwaving was done for 10 min at 604 W. The acrylic bases were fixed on their respective casts with instant adhesive (Super Bonder®) and the base/cast sets were sectioned transversally in the posterior palatal zone. The existence of gaps between the casts and acrylic bases was assessed using a profile projector at 5 points. No statistically significant differences were observed between the control group and group II. However, group III differed statistically from the others (p<0.05). Treatment in microwave oven at 604 W for 10 min produced the greatest discrepancies in the adaptation of maxillary acrylic resin denture bases to the stone casts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compaction rate, the relation between the density of the wood panel and the density of the wood used for producing the particles, is an indicator of the product's densification. Among the various types of wood panels, particleboards are widely employed in the lumber industry, mainly for the furniture production. This paper presents a study of the relation between the compaction rate and the properties of tensile strength perpendicular to surface, Modulus of Rupture (MOR) and Modulus of Elasticity (MOE) obtained from a static bending test, thickness swelling and water absorption (2 and 24 hours). These properties were calculated according to the Brazilian ABNT, NBR 14810 standard. Particleboards were produced using the species Pinus elliotti and adhesive ureaformaldehyde. The relation was established by a multiple linear regression, and the most appropriate statistical models were determined. The estimated models indicate statistically significant effects of water absorption in 2 hours and MOR in the particleboards' compaction rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the use of air abrasion has grown in pediatric dentistry, the aim of this study was to evaluate, by means of shear bond strength testing, the need to use the total etching technique or self-etching primers on dentin of primary teeth after air abrasion. Twenty-five exfoliated primary molars had their occlusal dentin exposed by trimming and polishing. Specimens were treated by: Air abrasion + Scotchbond MultiPurpose adhesive (G1); 37% phosphoric acid + Scotchbond MP adhesive (G2); Clearfil SE (G3); Air abrasion ( 37% phosphoric acid + Scotchbond MP adhesive (G4); Air abrasion + Clearfil SE (G5). On the treated surface, a cylinder of 2 mm by 6 mm was made using a composite resin (Z100). Duncan's test showed that: (G2 = G3 = G5) > (G1 = G4). The use of a selfetching primer on air abraded dentin is recommended to obtain higher bond strengths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the interfacial microgap with different materials used for pulp protection. The null hypothesis tested was that the combination of calcium hydroxide, resin-modified glass ionomer, and dentin adhesive used as pulp protection in composite restorations would not result in a greater axial gap than that obtained with hybridization only. Materials and Methods: Standardized Class V preparations were performed in buccal and lingual surfaces of 60 caries-free, extracted human third molars. The prepared teeth were randomly assessed in six groups: (1) Single Bond (SB) (3M ESPE, St. Paul, MN, USA); (2) Life (LF) (Kerr Co., Romulus, MI, USA) + SB; (3) LF + Vitrebond (VT) (3M ESPE) + SB; (4) VT + SB; (5) SB + VT; (6) SB + VT + SB. They were restored with microhybrid composite resin Filtek Z250 (3M ESPE), according to the manufacturer's instructions. However, to groups 5 and 6, the dentin bonding adhesive was applied prior to the resin-modified glass ionomer. The specimens were then thermocycled, cross-sectioned through the center of the restoration, fixed, and processed for scanning electron microscopy. The specimens were mounted on stubs and sputter coated. The internal adaptation of the materials to the axial wall was analyzed under SEM with × 1,000 magnification. Results: The data obtained were analyzed with nonparametric tests (Kruskal-Wallis, p ≤ .05). The null hypothesis was rejected. Calcium hydroxide and resin-modified glass ionomer applied alone or in conjunction with each other (p < .001) resulted in statistically wider microgaps than occurred when the dentin was only hybridized prior to the restoration. ©2005 BC Decker Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed at evaluating the antisepsis of the root canal system (RCS) and periapical region (PR) provided by rotary instrumentation associated with chlorhexidine + calcium hydroxide as intracanal medicament. Chronic periapical lesions were induced in 26 pre-molar roots in two dogs. After microbiological sampling, automatic instrumentation using the Profile system and irrigation with 5.25% sodium hypochlorite solution, with a final rinse of 14.3% EDTA followed by profuse irrigation with physiological saline were carried out in 18 root canals. After drying the canals, a paste based on calcium hydroxide associated with a 2% chlorhexidine digluconate solution was placed inside them. After 21 days, the medication was removed, leaving the root canals empty and coronally sealed. After 96 hours, a final microbiological sample was obtained, followed by histomicrobiological processing by the Brown & Brenn method. Eight untreated root canals represented the control group (C-G). Based on the Mann-Whitney test at a confidence level of 5% (p < 0.05), the procedures of antisepsis used offered significant efficacy (p < 0.05) resulting in 100.0% of the canals free of microorganisms. In the C-G, an elevated incidence of various microbial morphotypes was confirmed in all sites of the RCS, with the presence of microbial colonies in the periapical region. In contrast, the experimental group showed a similar pattern of infection in the RCS, although less intense and a reduced level of periapical infection (p < 0.05). It was concluded that adequate instrumentation followed by the application of calcium hydroxide + chlorhexidine offered significant elimination of microorganisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To test the bond strength between a quartz-fiber-reinforced composite post (FRC) and a resin cement. The null hypothesis was that the bond strength can be increased by using a chairside tribochemical silica-coating system. Materials and Methods: Thirty quartz-FRCs (Light-Post) were divided into 3 groups according to the post surface treatment: G1) Conditioning with 32% phosphoric acid (1 min), applying a silane coupling agent; G2) etching with 10% hydrofluoric acid (1 min), silane application; G3) chairside tribochemical silica coating method (CoJet System): air abrasion with 30-μ SiO x-modified Al2O3 particles, silane application. Thereafter, the posts were cemented into a cylinder (5 mm diameter, 15 mm height) with a resin cement (Duo-Link). After cementation, the specimens were stored in distilled water (37°C/24 h) and sectioned along the x and y axes with a diamond wheel under cooling (Lab-cut 1010) to create nontrimmed bar specimens. Each specimen was attached with cyanoacrylate to an apparatus adapted for the microtensile test. Microtensile testing was conducted on a universal testing machine (1 mm/min). The data obtained were submitted to the one-way ANOVA and Tukey test (α = 0.05). Results: A significant influence of the conditioning methods was observed (p < 0.0001). The bond strength of G3 (15.14 ± 3.3) was significantly higher than the bond strengths of G1 (6.9 ± 2.3) and G2 (12.60 ± 2.8) (p = 0.000106 and p = 0.002631, respectively). Notwithstanding the groups, all the tested specimens showed adhesive failure between the resin cement and FRC. Conclusion: The chairside tribochemical system yielded the highest bond strength between resin cement and quartz-fiber post. The null hypothesis was accepted (p < 0.0001).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To evaluate the fatigue resistance of the bond between dentin and glass-infiltrated alumina ceramic, using different luting protocols. Materials and Methods: The null hypothesis is that the fatigue resistance varies with the luting strategy. Forty blocks of In-Ceram Alumina were prepared, and one surface of each block was abraded with 110-μm aluminum oxide particles. Then, the blocks were luted to flat dentin surfaces of 40 human third molars, using 4 different luting strategies (luting system [LS]/ceramic surface conditioning [CSC]) (n=10): (G1) [LS] RelyX-Unicem/[CSC] airborne abrasion with 110-μm Al2O3 particles; (G2) [LS] One-Step + Duo-Link (bis-GMA-based resin)/[CSC] etching with 4% hydrofluoric acid + silane agent; (G3) [LS] ED-Primer + Panavia F (MDP-based resin)/[CSC] Al2O 3; (G4) [LS] Scotchbond1+RelyX-ARC (bis-GMA-based resin)/[CSC] chairside tribochemical silica coating (air abrasion with 30-μm SiO x particles + silane). After 24 h of water storage at 37°C, the specimens were subjected to 106 fatigue cycles in shear with a sinusoidal load (0 to 21 N, 8 Hz frequency, 37°C water). A fatigue survivor score was given, considering the number of the fatigue cycles until fracture. The failure modes of failed specimens were observed in a SEM. Results: G3 (score = 5.9, 1 failure) and G4 (score = 6, no failures) were statistically similar (p = 0.33) and had significantly higher fatigue resistance than G1 (score = 3.9, 5 failures) and G2 (score = 3.7, 6 failures) (p < 0.03). SEM analysis of fractured specimens of G1 and G2 showed that almost all the failures were between ceramic and cement. Conclusion: The MDP-based resin cement + sandblasting with Al2O3 particles (G3) and bis-GMA-based resin cement + tribochemical silica coating (G4), both using the respective dentin bonding systems, were the best luting protocols for the alumina ceramic. The null hypothesis was confirmed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A histological study was conducted of the alveolar bone healing process following tooth extraction of dehydrated rats after the implantation of fibrin adhesive (TISSUCOL™) associated to previous irrigation of the wound with a 5% epsilon aminocaproic acid solution (EACA). Seventy two rats were used, divided into three groups receiving different treatments after the surgical procedure. In group I, the gingival mucosa was sutured after extraction of the right upper incisor. In groups II and III, chronic dehydration was produced by water deprivation for 9 days (3 days in the preoperative period and 6 days in the postoperative period). In the animals of Group II, after tooth extraction, the gingival mucosa was sutured in the same way as performed in group I. In group III, after extraction, the dental socket was irrigated with 5% EACA, followed by implantation of the fibrin adhesive (TISSUCOL™). The mucosa was sutured in the same way as performed in the other groups. At 3, 7, 15 and 21 postoperative days, the animals were sacrificed in number of 6 for each group. Specimens containing the dental socket were removed and fixed in 10% formalin and decalcified in an equal part formic acid and sodium citrate solution. After routine processing, the specimens were embedded in paraffin for microtomy. We obtained 6 μm semi-serial slices that were stained with hematoxylin and eosin for histological evaluation. The results showed that the water deprivation in the pre- and postoperative periods caused a delay in the alveolar bone healing process. The use of the fibrin adhesive (TISSUCOL™) produced an improvement in the fibrinolytic picture caused by dehydration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (In-Ceram Zirconia) ceramics. Materials and Methods: Ten blocks (5 ×6 × 8 mm) of In-Ceram Alumina (AL), In-Ceram Zirconia (ZR), and Procera (PR) ceramics were fabricated according to each manufacturer's instructions and duplicated in composite. The specimens were assigned to one of the two following treatment conditions: (1) airborne particle abrasion with 110-μm Al2O3 particles + silanization, (2) silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. Each ceramic block was duplicated in composite resin (W3D-Master, Wilcos, Petrópolis, RJ, Brazil) using a mold made out of silicon impression material. Composite resin layers were incrementally condensed into the mold to fill up the mold and each layer was light polymerized for 40 s. The composite blocks were bonded to the surface-conditioned ceramic blocks using a resin cement system (Panavia F, Kuraray, Okayama, Japan). One composite resin block was fabricated for each ceramic block. The ceramic-composite was stored at 37°C in distilled water for 7 days prior to bond tests. The blocks were cut under water cooling to produce bar specimens (n = 30) with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (crosshead speed: 1 mm/min). Bond strength values were statistically analyzed using two-way ANOVA and Tukey's test (≤ 0.05). Results: Silica coating with silanization increased the bond strength significantly for all three high-strength ceramics (18.5 to 31.2 MPa) compared to that of airborne particle abrasion with 110-μm Al2O3 (12.7-17.3 MPa) (ANOVA, p < 0.05). PR exhibited the lowest bond strengths after both Al2O3 and silica coating (12.7 and 18.5 MPa, respectively). Conclusion: Conditioning the high-strength ceramic surfaces with silica coating and silanization provided higher bond strengths of the resin cement than with airborne particle abrasion with 110-μm Al2O3 and silanization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: This study evaluated the potential effects of denture base resin water storage time and an effective denture disinfection method (microwave irradiation at 650 W for 6 minutes) on the torsional bond strength between two hard chairside reline resins (GC Reline and New Truliner) and one heat-polymerizing denture base acrylic resin (Lucitone 199). Materials and Methods: Cylindrical (30 x 3.9 mm) denture base specimens (n = 160) were stored in water at 37°C (2 or 30 days) before bonding. A section (3.0 mm) was removed from the center of the specimens, surfaces prepared, and the reline materials packed into the space. After polymerization, specimens were divided into four groups (n = 10): Group 1 (G1) - tests performed after bonding; Group 2 (G2) - specimens immersed in water (200 ml) and irradiated twice (650 W for 6 minutes); Group 3 (G3) - specimens irradiated daily until seven cycles of disinfection; Group 4 (G4) - specimens immersed in water (37°C) for 7 days. Specimens were submitted to a torsional test (0.1 Nm/min), and the torsional strengths (MPa) and the mode of failure were recorded. Data from each reline material were analyzed by a two-way analysis of variance, followed by Neuman-Keuls test (p = 0.05). Results: For both Lucitone 199 water storage periods, before bonding to GC Reline resin, the mean torsional strengths of G2 (2 days - 138 MPa; 30 days - 132 MPa), G3 (2 days - 126 MPa; 30 days - 130 MPa), and G4 (2 days - 130 MPa; 30 days - 137 MPa) were significantly higher (p < 0.05) than G1 (2 days - 108 MPa; 30 days - 115 MPa). Similar results were found for Lucitone 199 specimens bonded to New Truliner resin, with G1 specimens (2 days - 73 MPa; 30 days - 71 MPa) exhibiting significantly lower mean torsional bond strength (p < 0.05) than G2 (2 day - 86 MPa; 30 days - 90 MPa), G3 (2 days - 82 MPa; 30 days - 82 MPa), and G4 specimens (2 days - 78 MPa; 30 days - 79 MPa). The adhesion of both materials was not affected by water storage time of Lucitone 199 (p > 0.05). GC reline showed a mixed mode of failure (adhesive/cohesive) and New Truliner failed adhesively. Conclusions: Up to seven microwave disinfection cycles did not decrease the torsional bond strengths between the hard reline resins, GC Reline and New Truliner to the denture base resin Lucitone 199. The effect of additional disinfection cycles on reline material may be clinically significant and requires further study. Copyright © 2006 by The American College of Prosthodontists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: This study assessed the shear bond strength of 4 hard chairside reline resins (Kooliner, Tokuso Rebase Fast, Duraliner II, Ufi Gel Hard) to a rapid polymerizing denture base resin (QC-20) processed using 2 polymerization cycles (A or B), before and after thermal cycling. Materials and Methods: Cylinders (3.5 mm x 5.0 mm) of the reline resins were bonded to cylinders of QC-20 polymerized using cycle A (boiling water-20 minutes) or B (boiling water; remove heat-20 minutes; boiling water-20 minutes). For each reline resin/polymerization cycle combination, 10 specimens (groups CAt e CBt) were thermally cycled (5 and 55°C; dwell time 30 seconds; 2,000 cycles); the other 10 were tested without thermal cycling (groups CAwt ad CBwt). Shear bond tests (0.5 mm/min) were performed on the specimens and the failure mode was assessed. Data were analyzed by 3-way ANOVA and Newman-Keuls post-hoc test (α=.05). Results: QC-20 resin demonstrated the lowest bond strengths among the reline materials (P<.05) and mainly failed cohesively. Overall, the bond strength of the hard chairside reline resins were similar (10.09±1.40 to 15.17±1.73 MPa) and most of the failures were adhesive/cohesive (mixed mode). However, Ufi Gel Hard bonded to QC-20 polymerized using cycle A and not thermally cycled showed the highest bond strength (P<.001). When Tokuso Rebase Fast and Duraliner II were bonded to QC-20 resin polymerized using cycle A, the bond strength was increased (P=.043) after thermal cycling. Conclusions: QC-20 displayed the lowest bond strength values in all groups. In general, the bond strengths of the hard chairside reline resins were comparable and not affected by polymerization cycle of QC-20 resin and thermal cycling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to evaluate the influence of cement thickness on the bond strength of a fiber-reinforced composite (FRC) post system to the root dentin. Eighteen single-rooted human teeth were decoronated (length: 16 mm), the canals were prepared, and the specimens were randomly allocated to 2 groups (n = 9): group 1 (low cement thickness), in which size 3 FRC posts were cemented using adhesive plus resin cement; and group 2 (high cement thickness), in which size 1 FRC posts were cemented as in group 1. Specimens were sectioned, producing 5 samples (thickness: 1.5 mm). For cement thickness evaluation, photographs of the samples were taken using an optical microscope, and the images were analyzed. Each sample was tested in push-out, and data were statistically analyzed. Bond strengths of groups 1 and 2 did not show significant differences (P = .558), but the cement thicknesses for these groups were significantly different (P < .0001). The increase in cement thickness did not significantly affect the bond strength (r2 = 0.1389, P = .936). Increased cement thickness surrounding the FRC post did not impair the bond strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to evaluate the durability of adhesion between acrylic teeth and denture base acrylic resin. The base surfaces of 24 acrylic teeth were flatted and submitted to 4 surface treatment methods: SM1 (control): No SM; SM2: application of a methyl methacrylate-based bonding agent (Vitacol); SM3: air abrasion with 30-μm silicone oxide plus silane; SM4: SM3 plus SM2. A heat-polymerized acrylic resin was applied to the teeth. Thereafter, bar specimens were produced for the microtensile test at dry and thermocyled conditions (60 days water storage followed by 12,000 cycles). The results showed that bond strength was significantly affected by the SM (P < .0001) (SM4 = SM2 > SM3 > SM1) and storage regimens (P < .0001) (dry > thermocycled). The methyl methacrylate-based adhesive showed the highest bond strength.