979 resultados para RESIDUE
Resumo:
Mammalian group-II phospholipases A2 (PLA2) of inflammatory fluids display bactericidal properties, which are dependent on their enzymatic activity. This study shows that myotoxins II (Lys49) and III (Asp49), two group-II PLA2 isoforms from the venom of Bothrops asper, are lethal to a broad spectrum of bacteria. Since the catalytically inactive Lys49 myotoxin II isoform has similar bactericidal effects to its catalytically active Asp49 counterpart, a bactericidal mechanism that is independent of an intrinsic PLA2 activity is demonstrated. Moreover, a synthetic 13-residue peptide of myotoxin II, comprising residues 115-129 (common numbering system) near the C-terminal loop, reproduced the bactericidal effect of the intact protein. Following exposure to the peptide or the protein, accelerated uptake of the hydrophobic probe N-phenyl-N-naphthylamine was observed in susceptible but not in resistant bacteria, indicating that the lethal effect was initiated on the bacterial membrane. The outer membrane, isolated lipopolysaccharide (LPS), and lipid A of susceptible bacteria showed higher binding to the myotoxin II-(115-129)-peptide than the corresponding moieties of resistant strains. Bacterial LPS chimeras indicated that LPS is a relevant target for myotoxin II-(115-129)-peptide. When heterologous LPS of the resistant strain was present in the context of susceptible bacteria, the chimera became resistant, and vice versa. Myotoxin II represents a group-II PLA2 with a direct bactericidal effect that is independent of an intrinsic enzymatic activity, but adscribed to the presence of a short cluster of basic/hydrophobic amino acids near its C-terminal loop.
Resumo:
Here we report two novel 17-mer amidated linear peptides (TsAP-1 and TsAP-2) whose structures were deduced from cDNAs cloned from a venom-derived cDNA library of the Brazilian yellow scorpion, Tityus serrulatus. Both mature peptides were structurally-characterised following their location in chromatographic fractions of venom and synthetic replicates of each were subjected to a range of biological assays. The peptides were each active against model test micro-organisms but with different potencies. TsAP-1 was of low potency against all three test organisms (MICs 120-160µM), whereas TsAP-2 was of high potency against the Gram-positive bacterium, Staphylococcus aureus (MIC 5µM) and the yeast, Candida albicans (10µM). Haemolytic activity of TsAP-1 was low (4% at 160µM) and in contrast, that of TsAP-2 was considerably higher (18% at 20µM). Substitution of four neutral amino acid residues with Lys residues in each peptide had dramatic effects on their antimicrobial potencies and haemolytic activities, particularly those of TsAP-1. The MICs of the enhanced cationic analogue (TsAP-S1) were 2.5µM for S.aureus/C.albicans and 5µM for E.coli but with an associated large increase in haemolytic activity (30% at 5µM). The same Lys residue substitutions in TsAP-2 produced a dramatic effect on its MIC for E.coli lowering this from >320µM to 5µM. TsAP-1 was ineffective against three of the five human cancer cell lines tested while TsAP-2 inhibited the growth of all five. Lys residue substitution of both peptides enhanced their potency against all five cell lines with TsAp-S2 being the most potent with IC50 values ranging between 0.83 and 2.0 µM. TsAP-1 and TsAP-2 are novel scorpion venom peptides with broad spectrum antimicrobial and anticancer cell activities the potencies of which can be significantly enhanced by increasing their cationicity.
Resumo:
Plant embryogenesis is intimately associated with programmed cell death. The mechanisms of initiation and control of programmed cell death during plant embryo development are not known. Proteolytic activity associated with caspase-like proteins is paramount for control of programmed cell death in animals and yeasts. Caspase family of proteases has unique strong preference for cleavage of the target proteins next to asparagine residue. In this work, we have used synthetic peptide substrates containing caspase recognition sites and corresponding specific inhibitors to analyse the role of caspase-like activity in the regulation of programmed cell death during plant embryogenesis. We demonstrate that VEIDase is a principal caspase-like activity implicated in plant embryogenesis. This activity increases at the early stages of embryo development that coincide with massive cell death during shape remodeling. The VEIDase activity exhibits high sensitivity to pH, ionic strength and Zn2+ concentration. Altogether, biochemical assays show that VEIDase plant caspase-like activity resembles that of both mammalian caspase-6 and yeast metacaspase, YCA1. In vivo, VEIDase activity is localised specifically in the embryonic cells during both the commitment and in the beginning of the execution phase of programmed cell death. Inhibition of VEIDase prevents normal embryo development via blocking the embryo-suspensor differentiation. Our data indicate that the VEIDase activity is an integral part in the control of plant developmental cell death programme, and that this activity is essential for the embryo pattern formation.
Resumo:
GHMP kinases are a group of structurally-related small molecule kinases. They have been found in all kingdoms of life and are mostly responsible for catalysing the ATP-dependent phosphorylation of intermediary metabolites. Although the GHMP kinases are of clinical, pharmaceutical and biotechnological importance, the mechanism of GHMP-kinases is controversial. A catalytic base mechanism was suggested for mevalonate kinase that has a structural feature of the ?-phosphate of ATP close to an aspartate residue; however, for one GHMP member, homoserine kinase, where the residue acting as general base is absent, a direct phosphorylation mechanism was suggested. Furthermore, it has been proposed by some authors that all the GHMP kinases function via the direct phosphorylation mechanism. This controversy in mechanism has limited our ability to exploit these enzymes as drug targets and in biotechnology. Here the phosphorylation reaction mechanism of the human galactokinase, a member of GHMP kinase was investigated using molecular dynamics simulations and density functional theory-based QM/MM calculations (B3LYP-D/AMBER99). The reaction coordinates were localized by potential energy scan using adiabatic mapping method. Our results indicate that a highly conserved Glu174 captures Arg105 to the proximity of the a-phosphate of ATP forming a H-bond network, therefore the mobility of ATP in the large oxyanion hole is restricted. Arg228 functions to stabilize the negative charge developed at the ß,?-bridging oxygen of the ATP during bond cleavage. The reaction occurs via direct phosphorylation mechanism and the Asp186 in proximity of ATP does not directly participate in the reaction pathway. Since Arg228 is not conserved among GHMP kinases, reagents which form interactions with Arg228, and therefore can interrupt its function in phosphorylation may be developed into potential selective inhibitors for galactokinase.
Resumo:
UDP-galactose 4'-epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. Type III galactosemia, an inherited metabolic disease, is associated with mutations in human GALE. The V94M mutation has been associated with a very severe form of type III galactosemia. While a variety of structural and biochemical studies have been reported that elucidate differences between the wildtype and this mutant form of human GALE, little is known about the dynamics of the protein and how mutations influence structure and function. We performed molecular dynamics simulations on the wildtype and V94M enzyme in different states of substrate and cofactor binding. In the mutant, the average distance between the substrate and both a key catalytic residue (Tyr157) and the enzyme-bound NAD(+) cofactor and the active site dynamics are altered making substrate binding slightly less stable. However, overall stability or dynamics of the protein is not altered. This is consistent with experimental findings that the impact is largely on the turnover number (kcat), with less substantial effects on Km. Active site fluctuations were found to be correlated in enzyme with substrate bound to just one of the subunits in the homodimer suggesting inter-subunit communication. Greater active site loop mobility in human GALE compared to the equivalent loop in Escherichia coli GALE explains why the former can catalyze the interconversion of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine while the bacterial enzyme cannot. This work illuminates molecular mechanisms of disease and may inform the design of small molecule therapies for type III galactosemia.
Resumo:
Galactokinase, a member of the GHMP (galactokinase, homoserine kinase, mevalonate kinase, phosphomevalonate kinase) family of kinases, catalyses the ATP-dependent phosphorylation of galactose at position 1 on the sugar. This reaction is important in the Leloir pathway of galactose catabolism. The need to produce monosaccharides phosphorylated at position 1 for the synthesis of complex molecules, including aminoglycoside antibiotics, has stimulated interest in exploiting the catalytic potential of galactokinases. However, the enzyme is quite specific, generally only catalysing the phosphorylation of D-galactose and closely related molecules. Directed evolution strategies have identified a key tyrosine residue (Tyr-371 in the Escherichia coli enzyme) which, although distant from the active site, influences the specificity of the enzyme. Alteration of this residue to histidine in E. coli and Lactococcus lactis galactokinases dramatically expanded the substrate range to include both D- and L-sugars. Similar experiments with the human enzyme demonstrated that alteration of the equivalent tyrosine (Tyr-379) to cysteine, lysine, arginine, serine or tryptophan increased the catalytic promiscuity of the enzyme. It has been hypothesised that these specificity changes arise because of alterations in the flexibility of the polypeptide chain. This hypothesis has yet to be tested experimentally. The biotechnological potential of galactokinases is clearly considerable and exploitation of closely related enzymes such as N-acetylgalactosamine kinase and arabinose kinase would expand that potential still further.
Resumo:
The GHMP kinases are a structurally related family of small molecule kinases named after four of its members - galactokinase, homoserine kinase, mevalonate kinase and phosphomevalonate kinase. The group also includes the enzymes N-acetylgalactosamine kinase, arabinose kinase, mevalonate 5-diphosphate decarboxylase, archeal shikimate kinase and 4-(cytidine 5'-diphospho)-2-c-methyl-D-erythritol kinase. In addition the group includes two members not known to be catalytically active, the Caenorhabditis elegans sex-fate determining protein XOL-1 and the Saccharomyces cerevisiae transcriptional activator Gal3p. Two catalytic mechanisms have been proposed for GHMP kinases. The structure of mevalonate kinase suggests that an aspartate residue acts as an active site base, removing a proton from the substrate to facilitate attack on the ? phosphate of MgATP. In contrast, in homoserine kinase there is no potential catalytic base and it is proposed that catalysis is driven by transition state stabilisation. Potential chemotherapeutic interventions against GHMP kinases fall into three main categories: inhibition of galactokinase to assist suffers of galactosemia, inhibition of mevalonate kinase or mevalonate 5-diphosphate decarboxylase to reduce flux through the cholesterol biosynthesis pathway and inhibition of bacterial GHMP kinases for novel anti-microbial therapies. These are in the early stages of development, but the accumulation of structural and mechanistic data will assist future progress.
Resumo:
Amphibian skin secretions contain a plethora of pharmacologically-active substances and represent established sources of bioactive peptides, including tachykinins. Tachykinins are one of the most widely-studied peptide families in animals and are found in neuroendocrine tissues from the lowest vertebrates to mammals. They are characterized by the presence of a highly-conserved C-terminal pentapeptide amide sequence motif (-FXGLM-amide) that also constitutes the bioactive core of the peptide. Amidation of the C-terminal methioninyl residue appears to be mandatory in the expression of biological activity. Here, we describe the isolation, characterization and molecular cloning of a novel tachykinin named ranachensinin, from the skin secretion of the Chinese brown frog, Rana chensinensis. This peptide, DDTSDRSN QFIGLM-amide, contains the classical C-terminal pentapeptide amide motif in its primary structure and an Ile (I) residue in the variable X position. A synthetic replicate of ranachensinin, synthesized by solid-phase Fmoc chemistry, was found to contract the smooth muscle of rat urinary bladder with an EC50 of 20.46 nM. However, in contrast, it was found to be of low potency in contraction of rat ileum smooth muscle with an EC50 of 2.98 µM. These data illustrate that amphibian skin secretions continue to provide novel bioactive peptides with selective effects on functional targets in mammalian tissues.
Resumo:
This paper presents a case-study of a PMU application with PSS support in a real large scale Chinese power system to suppress inter-area oscillations. The paper uses PMU measured feedback signals from a PSS input signal for dynamic torque analysis (DTA). In the paper, a mathematical model of multi-machine power system is described, followed by formation of the residue and DTA indices. Simulations of the model are used with a large-scale power system model to demonstrate the role of PSS and the equivalence of DTA residue indices.
Resumo:
Coccidiostats are authorized in the European Union (EU) to be used as poultry feed additives. Maximum (residue) levels (M(R)Ls) have been set within the EU for consumer and animal protection against unintended carry-over, and monitoring is compulsory. This paper describes the single-laboratory validation of a previously developed multiplex flow cytometric immunoassay (FCIA) as screening method for coccidiostats in eggs and feed and provides and compares different approaches for the calculation of the cut-off levels which are not described in detail within Commission Decision 2002/657/EC. Comparable results were obtained between the statistical (reference) approach and the rapid approaches. With the most rapid approach, the cut-off levels for narasin/salinomycin, lasalocid, diclazuril, nicarbazin (DNC) and monensin in egg, calculated as percentages of inhibition (%B/B0), were 60, 32, 76, 80 and 84, respectively. In feed, the cut-off levels for narasin/salinomycin, lasalocid, nicarbazin (DNC) and monensin were 70, 64, 72 and 78, respectively, and could not be determined for diclazuril. For all analytes, except for diclazuril in feed, the rate of false positives (false non-compliant) in blank samples was lower than 1 %, and the rate of false negatives (false compliant) at the M(R)Ls was below 5 %. Additionally, very good correlations (r ranging from 0.994 to 0.9994) were observed between two different analysers, a sophisticated flow cytometer (FlexMAP 3D(®)) and a more cost-efficient and transportable planar imaging detector (MAGPIX(®)), hence demonstrating adequate transferability.
Resumo:
Tryptophyllins are a group of small (4–14 amino acids), heterogenous peptides, mostly from the skins of hylid frogs from the genera, Phyllomedusa and Litoria. To date, more than forty TPHs have been discovered in species from these two genera. Here, we describe the identification of a novel tryptophyllin type 3 peptide, PhT-3, from the extracts of skin of the orange-legged monkey frog, Phyllomedusa hypochondrialis, and molecular cloning of its precursor-encoding cDNA from a cDNA library constructed from the same skin sample. Full primary structural characterization was achieved using a combination of direct Edman degradation, mass spectrometry and deduction from cloned skin-derived cDNA. The open-reading frame of the precursor cDNA was found to consist of 63 amino acid residues. The mature peptide arising from this precursor contains a post-translationally modified N-terminal pyroglutamate (pGlu) residue, formed from acid-mediated cyclization of an N-terminal Gln (Q) residue, and with the structure: pGlu-Asp-Lys-Pro-Phe-Trp-Pro-Pro-Pro-Ile-Tyr-Pro-Met. Pharmacological assessment of a synthetic replicate of this peptide on phenylephrine preconstricted rat tail artery segments, revealed a reduction in relaxation induced by bradykinin. PhT-3 was also found to mediate antiproliferative effects on human prostate cancer cell lines.
Resumo:
To develop a chemical inhibitor that can efficiently suppress coal oxidation, nine tetraalkylphosphonium-based ionic liquids (ILs) and one imidazolium-based IL [1-allyl-3-methylimidazolium chloride ([AMIm]Cl)] were examined as additives. These ILs were used to treat and investigate the inhibitory effect on the oxidation activity and the structure of lignite coal. Characterization using thermogravimetric analysis showed that phosphonium-based ILs are able to inhibit coal oxidation up to 400 degrees C with the tributylethylphosphonium diethylphosphate ([P-4,P-4,P-4,P-2][DEP]) found to be the most effective. In contrast to the tetraalkylphosphonium-based ILs, inhibition using [AMIm]Cl was only found to be effective at temperatures below 250 degrees C, indicating that the tetraallcylphosphonium-based ILs may be more suitable for the future application of suppressing coal spontaneous combustion over a wide range of temperatures. Fourier transform infrared spectroscopic data showed that the various functional groups change in the coal following IL treatment, which are a decrease in the minerals and hydrogen bonds in all treated coals, while decreased aliphatic hydrocarbon and increased carbonyl bonds only appeared in some samples. During the oxidation of coal, the decomposition of aliphatic hydrocarbon groups is inhibited and the formation of carbonyl groups is delayed, so that the evolved gas concentration decreased, as shown by the temperature-programmed oxidation-mass spectrometry results. The deployment of the [P-4,P-4,P-4,P-2][ DEP] and tributylmethylphosphonium methylsulfate Its as additives also show good inhibitory effect on coal oxidation over the temperature range studied, and a relatively stronger interaction between [P-4,P-4,P-4,P-2] [DEP] and coal is demonstrated by the additive model.
Resumo:
Background: To determine the role of rhodopsin (RHO) gene mutations in patients with sector retinitis pigmentosa (RP) from Northern Ireland.
Design: A case series of sector RP in a tertiary ocular genetics clinic.
Participants: Four patients with sector RP were recruited from the Royal Victoria Hospital (Belfast, Northern Ireland) and Altnagelvin Hospital (Londonderry, Northern Ireland) following informed consent.
Methods: The diagnosis of sector RP was based on clinical examination, International Society for Clinical Electrophysiology of Vision (ISCEV) standard electrophysiology, and visual field analysis. DNA was extracted from peripheral blood leucocytes and the coding regions and adjacent flanking intronic sequences of the RHO gene were polymerase chain reaction (PCR) amplified and cycle sequenced.
Main Outcome Measure: Rhodopsin mutational status.
Results: A heterozygous missense mutation in RHO (c.173C > T) resulting in a non-conservative substitution of threonine to methionine (p. Thr58Met) was identified in one patient and was absent from 360 control individuals. This non-conservative substitution (p.Thr58Met) replaces a highly evolutionary conserved polar hydrophilic threonine residue with a non-polar hydrophobic methionine residue at position 58 near the cytoplasmic border of helix A of RHO.
Conclusions: The study identified a RHO gene mutation (p.Thr58Met) not previously reported in RP in a patient with sector RP. These findings outline the phenotypic variability associated with RHO mutations. It has been proposed that the regional effects of RHO mutations are likely to result from interplay between mutant alleles and other genetic, epigenetic and environmental factors.
Resumo:
The depletion of three banned nitroimidazole drugs (dimetridazole (DMZ), metronidazole (MNZ) and ronidazole (RNZ)) was investigated in black tiger shrimp (Penaeus monodon) following in-water medication. The highest concentrations of residues were measured immediately after the 24 h immersion (day 0). At this time, MNZ and MNZ-OH residues were measured in shrimp tissue samples at concentrations ranging from 361–4189 and 0.28–6.6 μg kg−1, respectively. DMZ and its metabolites HMMNI ranged in concentration between 31509–37780 and 15.0–31.9 μg kg−1, respectively. RNZ and HMMNI concentrations ranged 14530–24206 and 25.0–55 μg kg−1, respectively. MNZ, DMZ and RNZ were the more persistent marker residues and can be detected for at least eight days post-treatment. MNZ-OH was only detectable on day 0 following treatment with MNZ. HMMNI residues were only detectable up to day 1 (0.97–3.2 μg kg−1) or 2 (1.2–4.5 μg kg−1) following DMZ and RNZ treatment, respectively. The parent drugs, MNZ, DMZ and RNZ were still measureable on day 8 at 0.12–1.00, 40.5–55 and 8.8–18.7 μg kg−1, respectively. The study also investigated the stability of nitroimidazole residues under various cooking procedures (frying, grilling, boiling and boiling followed by microwaving). The experiments were carried out in shrimp muscle tissue containing both high and low concentrations of these residues. Different cooking procedures showed the impact on nitroimidazole residue concentration in shrimp tissuetheir concentration depleted significantly, but partially, by boiling and/or microwaving but the compounds were largely resistant to conventional grilling or frying. Cooking cannot therefore be considered as a safeguard against harmful nitroimidazole residues in shrimp.