975 resultados para RAIN WATER
Resumo:
In this paper, we study the propagation of a shock wave in water, produced by the expansion of a spherical piston with a finite initial radius. The piston path in the x, t plane is a hyperbola. We have considered the following two cases: (i) the piston accelerates from a zero initial velocity and attains a finite velocity asymptotically as t tends to infinity, and (ii) the piston decelerates, starting from a finite initial velocity. Since an analytic approach to this problem is extremely difficult, we have employed the artificial viscosity method of von Neumann & Richtmyer after examining its applicability in water. For the accelerating piston case, we have studied the effect of different initial radii of the piston, different initial curvatures of the piston path in the x, t plane and the different asymptotic speeds of the piston. The decelerating case exhibits the interesting phenomenon of the formation of a cavity in water when the deceleration of the piston is sufficiently high. We have also studied the motion of the cavity boundary up to 550 cycles.
Resumo:
1. During the fermentation of water-logged soil containing added substances with different carbon-nitrogen ratios, the reaction first turns slightly acid, but soon returns to the original hydrogen-ion concentration (pH 7·6). 2. The quantities of ammonia present in the medium increase up to a point, after which there is steady decrease. 3. There is nitrification only in the case of substances with narrow C/N ratios. The production of nitrate generally commences only after about a month, when the vigour of the initial fermentation has subsided and fairly large quantities of ammonia have accumulated in the medium. 4. The extent of mineralisation of nitrogen is determined chiefly by the C/N ratio, though in the cases of substances like mahua and lantana the presence of other constituents may also influence the processes. The quantities of mineralised nitrogen present in the soil system generally tend to decrease after about two months.
Resumo:
Closed-form analytical expressions are derived for the reflection and transmission coefficients for the problem of scattering of surface water waves by a sharp discontinuity in the surface-boundary-conditions, for the case of deep water. The method involves the use of the Havelock-type expansion of the velocity potential along with an analysis to solve a Carleman-type singular integral equation over a semi-infinite range. This method of solution is an alternative to the Wiener-Hopf technique used previously.
Resumo:
A steel disc is cut using a single point tool. The coefficient of friction of the nascent cut surface is measured by a spherical steel pin situated in close proximity of the point of cutting. The tool, disc and the friction pin are immersed in an oil in water emulsion bath during the experiment. The purpose of the experiments conducted here is to record the effect of hydrophilic/lypophilic balance (HLB) of the emulsifier on the lubricity experienced in the cutting operation. The more lypophilic emulsifiers were found to give greater lubricity than what is recorded when the emulsifier is more hydrophilic. XPS and FTIR spectroscopy are used to explore the tribofilm generated on the nascent cut surface to indicate a possible rationale for the effect. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fully atomistic molecular dynamics simulations have been carried out to investigate the correlation of biological activity with dynamics of water molecules in an aqueous protein solution of the toxic domain of enterotoxin (PDB ID: 1ETN). This is a small protein of 13 amino acid residues. Our study of this water soluble protein clearly reveals that water dynamics slows down in the hydration layer. Despite this general slowing down, water molecules in the vicinity of the second beta turn of this protein exhibit faster dynamics than those near other regions of the protein. Since this beta turn is believed to play a critical role in the receptor binding of this protein, the faster dynamics of water near the beta turn m ay have biological significance. The collective orientational dynamics of the water molecules in the protein solution exhibits a characteristic long time component of 27 ps, which agrees well with dielectric relaxation experiments.
Identity, energetics, dynamics and environment of interfacial water molecules in a micellar solution
Resumo:
The structure and energetics of interfacial water molecules in the aqueous micelle of cesium perfluorooctanoate have been investigated, using large-scale atomistic molecular dynamics simulations, with the primary objective of classifying them. The simulations show that the water molecules at the interface fall into two broad classes: bound and free, present in a ratio of 9:1. The bound water molecules can be further categorized on the basis of the number of hydrogen bonds (one or two) that they form with the surfactant headgroups. The hydrogen bonds of the doubly hydrogen-bonded species are found to be, on the average, slightly weaker than those in the singly bonded species. The environment around interfacial water molecules is more ordered than that in the bulk. The surface water molecules have substantially lower potential energy, because of interaction with the micelle. In particular, both forms of bound water have energies that are lower by �2.5-4.0 kcal/ mol. Entropy is found to play an important role in determining the relative concentration of the species.
Resumo:
The specified range of free chlorine residual (between minimum and maximum) in water distribution systems needs to be maintained to avoid deterioration of the microbial quality of water, control taste and/or odor problems, and hinder formation of carcino-genic disinfection by-products. Multiple water quality sources for providing chlorine input are needed to maintain the chlorine residuals within a specified range throughout the distribution system. The determination of source dosage (i.e., chlorine concentrations/chlorine mass rates) at water quality sources to satisfy the above objective under dynamic conditions is a complex process. A nonlinear optimization problem is formulated to determine the chlorine dosage at the water quality sources subjected to minimum and maximum constraints on chlorine concentrations at all monitoring nodes. A genetic algorithm (GA) approach in which decision variables (chlorine dosage) are coded as binary strings is used to solve this highly nonlinear optimization problem, with nonlinearities arising due to set-point sources and non-first-order reactions. Application of the model is illustrated using three sample water distribution systems, and it indicates that the GA,is a useful tool for evaluating optimal water quality source chlorine schedules.
Resumo:
The maintenance of chlorine residual is needed at all the points in the distribution system supplied with chlorine as a disinfectant. The propagation and level of chlorine in a distribution system is affected by both bulk and pipe wall reactions. It is well known that the field determination of wall reaction parameter is difficult. The source strength of chlorine to maintain a specified chlorine residual at a target node is also an important parameter. The inverse model presented in the paper determines these water quality parameters, which are associated with different reaction kinetics, either in single or in groups of pipes. The weighted-least-squares method based on the Gauss-Newton minimization technique is used for the estimation of these parameters. The validation and application of the inverse model is illustrated with an example pipe distribution system under steady state. A generalized procedure to handle noisy and bad (abnormal) data is suggested, which can be used to estimate these parameters more accurately. The developed inverse model is useful for water supply agencies to calibrate their water distribution system and to improve their operational strategies to maintain water quality.
Resumo:
A study of environmental chloride and groundwater balance has been carried out in order to estimate their relative value for measuring average groundwater recharge under a humid climatic environment with a relatively shallow water table. The hybrid water fluctuation method allowed the split of the hydrologic year into two seasons of recharge (wet season) and no recharge (dry season) to appraise specific yield during the dry season and, second, to estimate recharge from the water table rise during the wet season. This well elaborated and suitable method has then been used as a standard to assess the effectiveness of the chloride method under forest humid climatic environment. Effective specific yield of 0.08 was obtained for the study area. It reflects an effective basin-wide process and is insensitive to local heterogeneities in the aquifer system. The hybrid water fluctuation method gives an average recharge value of 87.14 mm/year at the basin scale, which represents 5.7% of the annual rainfall. Recharge value estimated based on the chloride method varies between 16.24 and 236.95 mm/year with an average value of 108.45 mm/year. It represents 7% of the mean annual precipitation. The discrepancy observed between recharge value estimated by the hybrid water fluctuation and the chloride mass balance methods appears to be very important, which could imply the ineffectiveness of the chloride mass balance method for this present humid environment.
Resumo:
One of the assumptions of the van der Waals and Platteeuw theory for gas hydrates is that the host water lattice is rigid and not distorted by the presence of guest molecules. In this work, we study the effect of this approximation on the triple-point lines of the gas hydrates. We calculate the triple-point lines of methane and ethane hydrates via Monte Carlo molecular simulations and compare the simulation results with the predictions of van der Waals and Platteeuw theory. Our study shows that even if the exact intermolecular potential between the guest molecules and water is known, the dissociation temperatures predicted by the theory are significantly higher. This has serious implications to the modeling of gas hydrate thermodynamics, and in spite of the several impressive efforts made toward obtaining an accurate description of intermolecular interactions in gas hydrates, the theory will suffer from the problem of robustness if the issue of movement of water molecules is not adequately addressed.
Resumo:
We find that at low temperature water, large amplitude (similar to 60 degrees) rotational jumps propagate like a string, with the length of propagation increasing with lowering temperature. The strings are formed by mobile 5-coordinated water molecules which move like a Glarum defect (J. Chem. Phys., 1960, 33, 1371), causing water molecules on the path to change from 4-coordinated to 5-coordinated and again back to 4-coordinated water, and in the process cause the tagged water molecule to jump, by following essentially the Laage-Hynes mechanism (Science, 2006, 311, 832-835). The effects on relaxation of the propagating defect causing large amplitude jumps are manifested most dramatically in the mean square displacement (MSD) and also in the rotational time correlation function of the O-H bond of the molecule that is visited by the defect (transient transition to the 5-coordinated state). The MSD and the decay of rotational time correlation function, both remain quenched in the absence of any visit by the defect, as postulated by Glarum long time ago. We establish a direct connection between these propagating events and the known thermodynamic and dynamic anomalies in supercooled water. These strings are found largely in the regions that surround the relatively rigid domains of 4-coordinated water molecules. The propagating strings give rise to a noticeable dynamical heterogeneity, quantified here by a sharp rise in the peak of the four-point density response function, chi(4)(t). This dynamics heterogeneity is also responsible for the breakdown of the Stokes-Einstein relation.