997 resultados para Quenching rate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of temperature on respiration rate has been established, using Cartesian divers, for the meiofaunal sabellid polychaeteManayunkia aestuarina, the free-living nematodeSphaerolaimus hirsutus and the harpacticoid copepodTachidius discipes from a mudflat in the Lynher estuary, Cornwall, U.K. Over the temperature range normally experienced in the field, i.e. 5–20° C the size-compensated respiration rate (R c) was related to the temperature (T) in °C by the equation Log10 R c=-0.635+0.0339T forManayunkia, Log10 R c=0.180+0.0069T forSphaerolaimus and Log10 R c=-0.428+0.0337T forTachidius, being equivalent toQ 10 values of 2.19, 1.17 and 2.17 respectively. In order to derive the temperature response forManayunkia a relationship was first established between respiration rate and body size: Log10 R=0.05+0.75 Log10 V whereR=respiration in nl·O2·ind-1·h-1 andV=body volume in nl. TheQ 10 values are compared with values for other species derived from the literature. From these limited data a dichotomy emerges: species with aQ 10≏2 which apparently feed on diatoms and bacteria, the abundance of which are subject to large short term variability, and species withQ 10≏1 apparently dependent on more stable food sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Mytilus edulis acclimated its rates of oxygen consumption when maintained at reduced oxygen tensions for periods in excess of five days. 2. Acclimation was complete down to approximately 55 mm Hg PO2 at slightly lower oxygen tensions (51, 49 and 43 mm Hg) acclimation was complete in one experiment and partial in two others. 3. The capacity to acclimate oxygen consumption was not affected by a reduction in ration nor by an increase in temperature (10 to 22 °C). 4. Mussels that were acclimated to reduced oxygen tension (40–80 mm Hg), and then exposed to P O 2 of less than 20 mm Hg for two or five hours, had depressed rates of oxygen uptake when subsequently “recovered” to 40–80 mm Hg. 5. These results are discussed in the context of biochemical studies of anaerobic metabolism in mussels from the same experiments.