992 resultados para Proteins - metabolism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wild-type canine distemper virus (CDV) strain A75/17 induces a non-cytocidal infection in cultures of canine footpad keratinocytes (CFKs) but produces very little progeny virus. After only three passages in CFKs, the virus produced 100-fold more progeny and induced a limited cytopathic effect. Sequence analysis of the CFK-adapted virus revealed only three amino acid differences, of which one was located in each the P/V/C, M and H proteins. In order to assess which amino acid changes were responsible for the increase of infectious virus production and altered phenotype of infection, we generated a series of recombinant viruses. Their analysis showed that the altered P/V/C proteins were responsible for the higher levels of virus progeny formation and that the amino acid change in the cytoplasmic tail of the H protein was the major determinant of cytopathogenicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inherited mutations in human PALB2 are associated with a predisposition to breast and pancreatic cancers. PALB2's tumor-suppressing effect is thought to be based on its ability to facilitate BRCA2's function in homologous recombination. However, the biochemical properties of PALB2 are unknown. Here we show that human PALB2 binds DNA, preferentially D-loop structures, and directly interacts with the RAD51 recombinase to stimulate strand invasion, a vital step of homologous recombination. This stimulation occurs through reinforcing biochemical mechanisms, as PALB2 alleviates inhibition by RPA and stabilizes the RAD51 filament. Moreover, PALB2 can function synergistically with a BRCA2 chimera (termed piccolo, or piBRCA2) to further promote strand invasion. Finally, we show that PALB2-deficient cells are sensitive to PARP inhibitors. Our studies provide the first biochemical insights into PALB2's function with piBRCA2 as a mediator of homologous recombination in DNA double-strand break repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Circadian clocks, present in organisms leaving in a rhythmic environment, constitute the mechanisms allowing anticipation and adaptation of behavior and physiology in response to these environmental variations. As a consequence, most aspects of metabolism and behavior are under the control of this circadian clock. At a molecular level, in all the studied species, the rhythmic expression of the genes involved are generated by interconnected transcriptional and translational feedback loops. In mammals, the heterodimer composed of BMAL1 and its partners CLOCK or NPAS2 constitutes a transcriptional activator regulating transcription of Per and Cry genes. These genes encode for repressors of the activity of BMAL1:CLOCK or BMAL1: NPAS2 heterodimers, thus closing a negative feedback loop that generates rhythms of approximately 24 hours. The aim of my doctoral work consisted in the investigation of the role of circadian clock in the regulation of different aspects of mouse metabolism through the rhythmic activation of signaling pathways. First, we showed that one way how the circadian clock exerts its function as an oscillator is through the regulation of mRNA translation. Indeed, we present evidence showing that circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis. In the second part, we showed the involvement of the circadian clock in lipid metabolism. Indeed, the three PAR bZip transcription factors DBP, TEF and HLF, are regulated by the molecular clock and play key roles in the control of lipid metabolism. Here we present evidence concerning the circadian expression and activity of PPARα via the circadian transcription of genes involved in the release of fatty acids, natural ligands of PPARα. It leads to the rhythmic activation of PPARα itself which could then play its role in the transcription of genes encoding proteins involved in lipid, cholesterol and glucose metabolism. In addition, we considered the possible role of lipid transporters, here SCP2, in the modulation of circadian activation of signaling pathways such as TORC1, PPARα and SREBP, linked to metabolism, and its feedback on the circadian clock. In the last part of this work, we studied the effects of these circadian clock-orchestrated pathways in physiology, as clock disruptions have been shown to be linked to metabolic disorders. We performed in vivo experiments on genetically and high-fat induced obese mice devoid of functional circadian clock. The results obtained showed that clock disruption leads to impaired triglycerides and glucose homeostasis in addition to insulin secretion and sensitivity. -- Les rythmes circadiens, présents chez tout organisme vivant dans un environnement rythmique, constituent l'ensemble de mécanismes permettant des réponses comportementales et physiologiques anticipées et adaptées aux variations environnementales. De ce fait, la plupart des aspects liés au métabolisme et au comportement de ces organismes apparaissent être sous le contrôle de l'horloge circadienne contrôlant ces rythmes. Au niveau moléculaire, dans toutes les espèces étudiées, l'expression rythmique de gènes impliqués sont générés par l'interconnexion de boucles de contrôle transcriptionnelles et traductionnelles. Chez les mammifères, l'hétérodimère composé de BMAL1 et de ses partenaires CLOCK ou NPAS2 constitue un activateur transcriptionnel régulant la transcription des gènes Per et Cry. Ces gènes codent pour des répresseurs de l'activité des hétérodimères BMAL1:CLOCK ou BMAL1:NPAS2. Cela a pour effet de fermer la boucle négative, générant ainsi des rythmes d'environ 24 heures. Le but de mon travail de thèse a consisté en l'investigation du rôle de l'horloge circadienne dans la régulation de certains aspects du métabolisme chez la souris via la régulation de l'activation rythmique des voies de signalisation. Nous avons tout d'abord montré que l'horloge circadienne exerce sa fonction d'oscillateur notamment au niveau de la régulation de la traduction des ARNm. En effet, nous présentons des preuves montrant que l'horloge circadienne influence la traduction temporelle d'un groupe d'ARNm impliqués dans la biogénèse des ribosomes en contrôlant la transcription de facteurs d'initiation de la traduction ainsi que l'activation rythmique des voies de signalisation qui sont impliquées dans leur régulation. De plus, l'oscillateur circadien régule la transcription d'ARNm codant pour les protéines ribosomales et d'ARN ribosomaux. De cette façon, l'horloge circadienne exerce un rôle majeur dans la coordination des étapes de transcription et traduction permettant la biogénèse des ribosomes. Dans la deuxième partie, nous montrons les implications de l'horloge circadienne dans le métabolisme des lipides. En effet, DBP, TEF et HLF, trois facteurs de transcription de la famille des PAR bZip qui sont régulés par l'horloge circadienne, jouent un rôle clé dans le contrôle du métabolisme des lipides par l'horloge circadienne. Nous apportons ici des preuves concernant l'expression et l'activité rythmiques de PPARα via la transcription circadienne de gènes impliqués dans le relargage d'acides gras, ligands naturels de PPARα, conduisant à l'activation circadienne de PPARα lui-même, pouvant ainsi jouer son rôle de facteur de transcription de gènes codant pour des protéines impliquées dans le métabolisme des lipides, du cholestérol et du glucose. De plus, nous nous sommes penchés sur le rôle possible de transporteurs de lipides, ici SCP2, dans la modulation de l'activation circadienne de voies de signalisation, telles que TORC1, PPARα et SREBP, qui sont liées au métabolisme, ainsi que son impact sur l'horloge elle-même. Dans la dernière partie de ce travail, nous avons étudié les effets de l'activation de ces voies de signalisation régulées par l'horloge circadienne dans le contexte physiologique puisqu'il a été montré que la perturbation de l'horloge pouvait être associée à des désordres métaboliques. Pour ce faire, nous avons fait des expériences in vivo sur des souris déficientes pour l'horloge moléculaire pour lesquelles l'obésité est induite génétiquement ou induite par la nourriture riche en lipides. Les résultats que nous obtenons montrent des dérèglements au niveau de l'homéostasie des triglycérides et du glucose ainsi que sur l'expression et la réponse à l'insuline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In the yeast biomass production process, protein carbonylation has severe adverse effects since it diminishes biomass yield and profitability of industrial production plants. However, this significant detriment of yeast performance can be alleviated by increasing thioredoxins levels. Thioredoxins are important antioxidant defenses implicated in many functions in cells, and their primordial functions include scavenging of reactive oxygen species that produce dramatic and irreversible alterations such as protein carbonylation. Results: In this work we have found several proteins specifically protected by yeast Thioredoxin 2 (Trx2p). Bidimensional electrophoresis and carbonylated protein identification from TRX-deficient and TRX-overexpressing cells revealed that glycolysis and fermentation-related proteins are specific targets of Trx2p protection. Indeed, the TRX2 overexpressing strain presented increased activity of the central carbon metabolism enzymes. Interestingly, Trx2p specifically preserved alcohol dehydrogenase I (Adh1p) from carbonylation, decreased oligomer aggregates and increased its enzymatic activity. Conclusions: The identified proteins suggest that the fermentative capacity detriment observed under industrial conditions in T73 wine commercial strain results from the oxidative carbonylation of specific glycolytic and fermentation enzymes. Indeed, increased thioredoxin levels enhance the performance of key fermentation enzymes such as Adh1p, which consequently increases fermentative capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Saccharomyces cerevisiae cells contain three omega-class glutathione transferases with glutaredoxin activity (Gto1, Gto2, and Gto3), in addition to two glutathione transferases (Gtt1 and Gtt2) not classifiable into standard classes. Gto1 is located at the peroxisomes, where it is targeted through a PTS1-type sequence, whereas Gto2 and Gto3 are in the cytosol. Among the GTO genes, GTO2 shows the strongest induction of expression by agents such as diamide, 1-chloro-2,4-dinitrobenzene, tert-butyl hydroperoxide or cadmium, in a manner that is dependent on transcriptional factors Yap1 and/or Msn2/4. Diamide and 1-chloro-2,4-dinitrobenzene (causing depletion of reduced glutathione) also induce expression of GTO1 over basal levels. Phenotypic analyses with single and multiple mutants in the S. cerevisiae glutathione transferase genes show that, in the absence of Gto1 and the two Gtt proteins, cells display increased sensitivity to cadmium. A gto1-null mutant also shows growth defects on oleic acid-based medium, which is indicative of abnormal peroxisomal functions, and altered expression of genes related to sulfur amino acid metabolism. As a consequence, growth of the gto1 mutant is delayed in growth medium without lysine, serine, or threonine, and the mutant cells have low levels of reduced glutathione. The role of Gto1 at the S. cerevisiae peroxisomes could be related to the redox regulation of the Str3 cystathionine -lyase protein. This protein is also located at the peroxisomes in S. cerevisiae, where it is involved in transulfuration of cysteine into homocysteine, and requires a conserved cysteine residue for its biological activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lldPRD operon of Escherichia coli, involved in L-lactate metabolism, is induced by growth in this compound. We experimentally identified that this system is transcribed from a single promoter with an initiation site located 110 nucleotides upstream of the ATG start codon. On the basis of computational data, it had been proposed that LldR and its homologue PdhR act as regulators of the lldPRD operon. Nevertheless, no experimental data on the function of these regulators have been reported so far. Here we show that induction of an lldP-lacZ fusion by L-lactate is lost in an lldR mutant, indicating the role of LldR in this induction. Expression analysis of this construct in a pdhR mutant ruled out the participation of PdhR in the control of lldPRD. Gel shift experiments showed that LldR binds to two operator sites, O1 (positions 105 to 89) and O2 (positions 22 to 38), with O1 being filled at a lower concentration of LldR. L-Lactate induced a conformational change in LldR that did not modify its DNA binding activity. Mutations in O1 and O2 enhanced the basal transcriptional level. However, only mutations in O1 abolished induction by L-lactate. Mutants with a change in helical phasing between O1 and O2 behaved like O2 mutants. These results were consistent with the hypothesis that LldR has a dual role, acting as a repressor or an activator of lldPRD. We propose that in the absence of L-lactate, LldR binds to both O1 and O2, probably leading to DNA looping and the repression of transcription. Binding of L-lactate to LldR promotes a conformational change that may disrupt the DNA loop, allowing the formation of the transcription open complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pyruvate dehydrogenase kinase 4 (PDK4) inhibition by nuclear factor-κB (NF-κB) is related to a shift towards increased glycolysis during cardiac pathological processes such as cardiac hypertrophy and heart failure. The transcription factors estrogen-related receptor-α (ERRα) and peroxisome proliferator-activated receptor (PPAR) regulate PDK4 expression through the potent transcriptional coactivator PPARγ coactivator-1α (PGC-1α). NF-κB activation in AC16 cardiac cells inhibit ERRα and PPARβ/δ transcriptional activity, resulting in reduced PGC-1α and PDK4 expression, and an enhanced glucose oxidation rate. However, addition of the NF-κB inhibitor parthenolide to these cells prevents the downregulation of PDK4 expression but not ERRα and PPARβ/δ DNA binding activity, thus suggesting that additional transcription factors are regulating PDK4. Interestingly, a recent study has demonstrated that the transcription factor E2F1, which is crucial for cell cycle control, may regulate PDK4 expression. Given that NF-κB may antagonize the transcriptional activity of E2F1 in cardiac myocytes, we sought to study whether inflammatory processes driven by NF-κB can downregulate PDK4 expression in human cardiac AC16 cells through E2F1 inhibition. Protein coimmunoprecipitation indicated that PDK4 downregulation entailed enhanced physical interaction between the p65 subunit of NF-κB and E2F1. Chromatin immunoprecipitation analyses demonstrated that p65 translocation into the nucleus prevented the recruitment of E2F1 to the PDK4 promoter and its subsequent E2F1-dependent gene transcription. Interestingly, the NF-κB inhibitor parthenolide prevented the inhibition of E2F1, while E2F1 overexpression reduced interleukin expression in stimulated cardiac cells. Based on these findings, we propose that NF-κB acts as a molecular switch that regulates E2F1-dependent PDK4 gene transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inorganic polyphosphate (polyP) is found in all living organisms. The known polyP functions in eukaryotes range from osmoregulation and virulence in parasitic protozoa to modulating blood coagulation, inflammation, bone mineralization and cellular signalling in mammals. However mechanisms of regulation and even the identity of involved proteins in many cases remain obscure. Most of the insights obtained so far stem from studies in the yeast Saccharomyces cerevisiae. Here, we provide a short overview of the properties and functions of known yeast polyP metabolism enzymes and discuss future directions for polyP research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The calcified tissues, comprising bone and cartilage, are metabolically active tissues that bind and release calcium, bicarbonate and other substances according to systemic needs. Understanding the regulation of cellular metabolism in bone and cartilage is an important issue, since a link between the metabolism and diseases of these tissues is clear. An essential element in the function of bone-resorbing osteoclasts, namely regulation of bicarbonate transport, has not yet been thoroughly studied. Another example of an important but at the same time fairly unexplored subject of interest in this field is cartilage degeneration, an important determinant for development of osteoarthritis. The link between this and oxidative metabolism has rarely been studied. In this study, we have investigated the significance of bicarbonate transport in osteoclasts. We found that osteoclasts possess several potential proteins for bicarbonate transport, including carbonic anhydrase IV and XIV, and an electroneutral bicarbonate co-transporter NBCn1. We have also shown that inhibiting the function of these proteins has a significant impact on bone resorption and osteoclast morphology. Furthermore, we have explored oxidative metabolism in chondrocytes and found that carbonic anhydrase III (CA III), a protein linked to the prevention of protein oxidation in muscle cells, is also present in mouse chondrocytes, where its expression correlates with the presence of reactive oxygen species. Thus, our study provides novel information on the regulation of cellular metabolism in calcified tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyanobacteria are unicellular, non-nitrogen-fixing prokaryotes, which perform photosynthesis similarly as higher plants. The cyanobacterium Synechocystis sp. strain PCC 6803 is used as a model organism in photosynthesis research. My research described herein aims at understanding the function of the photosynthetic machinery and how it responds to changes in the environment. Detailed knowledge of the regulation of photosynthesis in cyanobacteria can be utilized for biotechnological purposes, for example in the harnessing of solar energy for biofuel production. In photosynthesis, iron participates in electron transfer. Here, we focused on iron transport in Synechocystis sp. strain PCC 6803 and particularly on the environmental regulation of the genes encoding the FutA2BC ferric iron transporter, which belongs to the ABC transporter family. A homology model built for the ATP-binding subunit FutC indicates that it has a functional ATPbinding site as well as conserved interactions with the channel-forming subunit FutB in the transporter complex. Polyamines are important for the cell proliferation, differentiation and apoptosis in prokaryotic and eukaryotic cells. In plants, polyamines have special roles in stress response and in plant survival. The polyamine metabolism in cyanobacteria in response to environmental stress is of interest in research on stress tolerance of higher plants. In this thesis, the potd gene encoding an polyamine transporter subunit from Synechocystis sp. strain PCC 6803 was characterized for the first time. A homology model built for PotD protein indicated that it has capability of binding polyamines, with the preference for spermidine. Furthermore, in order to investigate the structural features of the substrate specificity, polyamines were docked into the binding site. Spermidine was positioned very similarly in Synechocystis PotD as in the template structure and had most favorable interactions of the docked polyamines. Based on the homology model, experimental work was conducted, which confirmed the binding preference. Flavodiiron proteins (Flv) are enzymes, which protect the cell against toxicity of oxygen and/or nitric oxide by reduction. In this thesis, we present a novel type of photoprotection mechanism in cyanobacteria by the heterodimer of Flv2/Flv4. The constructed homology model of Flv2/Flv4 suggests a functional heterodimer capable of rapid electron transfer. The unknown protein sll0218, encoded by the flv2-flv4 operon, is assumed to facilitate the interaction of the Flv2/Flv4 heterodimer and energy transfer between the phycobilisome and PSII. Flv2/Flv4 provides an alternative electron transfer pathway and functions as an electron sink in PSII electron transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing levels of atmospheric ammonia from anthropogenic sources have become a serious problem for natural vegetation. Short-term effects of different ammoniacal sources on the N metabolism of Tillandsia pohliana, an atmospheric bromeliad, were investigated. One-year-old, aseptically grown plants were transferred to a modified Knudson medium lacking N for three weeks. Plants were subsequently transferred to Knudson media supplemented with 0.5, 1.0, or 1.5 mM of N in the forms of NH3 or NH4+ as the sole N source. The activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH-NADH) were determined after 40 h. The GS activity was stimulated significantly by increasing the levels of the gaseous form. The GDH-NADH activity increased significantly under increasing N concentrations with NH3, while no significant differences were observed with NH4+ as a N source. These results may reflect a faster NH3 absorption by T. pohliana compared to NH4+ uptake. The increased activity of GDH-NADH in NH3 treatment may play a role in protecting the cells from the toxic effects of increased endogenous level of free ammonium. A raise in the concentration of N, especially in the form of NH3, greatly increased the content of free amino acids and soluble proteins. A possible utilisation of T. pohliana to evaluate the changes of atmospheric gaseous ammonia is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extent of ADP-ribosylation in rectal cancer was compared to that of the corresponding normal rectal tissue. Twenty rectal tissue fragments were collected during surgery from patients diagnosed as having rectal cancer on the basis of pathology results. The levels of ADP-ribosylation in rectum cancer tissue samples (95.9 ± 22.1 nmol/ml) was significantly higher than in normal tissues (11.4 ± 4 nmol/ml). The level of NAD+ glycohydrolase and ADP-ribosyl cyclase activities in rectal cancer and normal tissue samples were measured. Cancer tissues had significantly higher NAD+ glycohydrolase and ADP-ribosyl cyclase activities than the control tissues (43.3 ± 9.1 vs 29.2 ± 5.2 and 6.2 ± 1.6 vs 1.6 ± 0.4 nmol mg-1 min-1). Approximately 75% of the NAD+ concentration was consumed as substrate in rectal cancer, with changes in NAD+/ADP-ribose metabolism being observed. When [14C]-ADP-ribosylated tissue samples were subjected to SDS-PAGE, autoradiographic analysis revealed that several proteins were ADP-ribosylated in rectum tissue. Notably, the radiolabeling of a 113-kDa protein was remarkably greater than that in control tissues. Poly(ADP)-ribosylation of the 113-kDa protein in rectum cancer tissues might be enhanced with its proliferative activity, and poly(ADP)-ribosylation of the same protein in rectum cancer patients might be an indicator of tumor diagnosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence based on immunological cross-reactivity and anti-diabetic properties has suggested the presence of insulin-like peptides in plants. The objective of the present study was to investigate the presence of insulin-like proteins in the leaves of Bauhinia variegata ("pata-de-vaca", "mororó"), a plant widely utilized in popular medicine as an anti-diabetic agent. We show that an insulin-like protein was present in the leaves of this plant. A chloroplast protein with a molecular mass similar to that of bovine insulin was extracted from 2-mm thick 15% SDS-PAGE gels and fractionated with a 2 x 24 cm Sephadex G-50 column. The activity of this insulin-like protein (0.48 mg/mL) on serum glucose levels of four-week-old Swiss albino (CF1) diabetic mice was similar to that of commercial swine insulin used as control. Further characterization of this molecule by reverse-phase hydrophobic HPLC chromatographic analysis as well as its antidiabetic activity on alloxan-induced mice showed that it has insulin-like properties. Immunolocalization of the insulin-like protein in the leaves of B. variegata was performed by transmission electron microscopy using a polyclonal anti-insulin human antibody. Localization in the leaf blades revealed that the insulin-like protein is present mainly in chloroplasts where it is also found associated with crystals which may be calcium oxalate. The presence of an insulin-like protein in chloroplasts may indicate its involvement in carbohydrate metabolism. This finding has strengthened our previous results and suggests that insulin-signaling pathways have been conserved through evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic Chagas' disease cardiomyopathy (CCC) is an often fatal outcome of Trypanosoma cruzi infection, with a poorer prognosis than other cardiomyopathies. CCC is refractory to heart failure treatments, and is the major indication of heart transplantation in Latin America. A diffuse myocarditis, plus intense myocardial hypertrophy, damage and fibrosis, in the presence of very few T. cruzi forms, are the histopathological hallmarks of CCC. To gain a better understanding of the pathophysiology of CCC, we analyzed the protein profile in the affected CCC myocardium. Homogenates from left ventricular myocardial samples of end-stage CCC hearts explanted during heart transplantation were subjected to two-dimensional electrophoresis with Coomassie blue staining; protein identification was performed by MALDI-ToF mass spectrometry and peptide mass fingerprinting. The identification of selected proteins was confirmed by immunoblotting. We demonstrated that 246 proteins matched in gels from two CCC patients. They corresponded to 112 distinct proteins. Along with structural/contractile and metabolism proteins, we also identified proteins involved in apoptosis (caspase 8, caspase 2), immune system (T cell receptor ß chain, granzyme A, HLA class I) and stress processes (heat shock proteins, superoxide dismutases, and other oxidative stress proteins). Proteins involved in cell signaling and transcriptional factors were also identified. The identification of caspases and oxidative stress proteins suggests the occurrence of active apoptosis and significant oxidative stress in CCC myocardium. These results generated an inventory of myocardial proteins in CCC that should contribute to the generation of hypothesis-driven experiments designed on the basis of the classes of proteins identified here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoporosis and atherosclerosis are chronic degenerative diseases which have been considered to be independent and whose common characteristic is increasing incidence with age. At present, growing evidence indicates the existence of a correlation between cardiovascular disease and osteoporosis, irrespective of age. The morbidity and mortality of osteoporosis is mainly related to the occurrence of fractures. Atherosclerosis shows a high rate of morbidity and especially mortality because of its clinical repercussions such as angina pectoris, acute myocardial infarction, stroke, and peripheral vascular insufficiency. Atherosclerotic disease is characterized by the accumulation of lipid material in the arterial wall resulting from autoimmune and inflammatory mechanisms. More than 90% of these fatty plaques undergo calcification. The correlation between osteoporosis and atherosclerosis is being established by studies of the underlying physiopathological mechanisms, which seem to coincide in many biochemical pathways, and of the risk factors for vascular disease, which have also been associated with a higher incidence of low-bone mineral density. In addition, there is evidence indicating an action of antiresorptive drugs on the reduction of cardiovascular risks and the effect of statins, antihypertensives and insulin on bone mass increase. The mechanism of arterial calcification resembles the process of osteogenesis, involving various cells, proteins and cytokines that lead to tissue mineralization. The authors review the factors responsible for atherosclerotic disease that correlate with low-bone mineral density.