1000 resultados para Protein exportation
Resumo:
Computation technology has dramatically changed the world around us; you can hardly find an area where cell phones have not saturated the market, yet there is a significant lack of breakthroughs in the development to integrate the computer with biological environments. This is largely the result of the incompatibility of the materials used in both environments; biological environments and experiments tend to need aqueous environments. To help aid in these development chemists, engineers, physicists and biologists have begun to develop microfluidics to help bridge this divide. Unfortunately, the microfluidic devices required large external support equipment to run the device. This thesis presents a series of several microfluidic methods that can help integrate engineering and biology by exploiting nanotechnology to help push the field of microfluidics back to its intended purpose, small integrated biological and electrical devices. I demonstrate this goal by developing different methods and devices to (1) separate membrane bound proteins with the use of microfluidics, (2) use optical technology to make fiber optic cables into protein sensors, (3) generate new fluidic devices using semiconductor material to manipulate single cells, and (4) develop a new genetic microfluidic based diagnostic assay that works with current PCR methodology to provide faster and cheaper results. All of these methods and systems can be used as components to build a self-contained biomedical device.
Resumo:
The proper targeting of membrane proteins is essential to the viability of all cells. Tail-anchored (TA) proteins, defined as having a single transmembrane helix at their C-terminus, are post-translationally targeted to the endoplasmic reticulum (ER) membrane by the GET pathway (Guided Entry of TA proteins). In the yeast pathway, the handover of TA substrates is mediated by the heterotetrameric Get4/Get5 (Get4/5) complex, which tethers the co-chaperone Sgt2 to the central targeting factor, the Get3 ATPase. Although binding of Get4/5 to Get3 is critical for efficient TA targeting, the mechanisms by which Get4 regulates Get3 are unknown. To understand the molecular basis of Get4 function, we used a combination of structural biology, biochemistry, and cell biology. Get4/5 binds across the Get3 dimer interface, in an orientation only compatible with a closed Get3, providing insight into the role of nucleotide in complex formation. Additionally, this structure reveals two functionally distinct binding interfaces for anchoring and ATPase regulation, and loss of the regulatory interface leads to strong defects in vitro and in vivo. Additional crystal structures of the Get3-Get4/5 complex give rise to an alternate conformation, which represents an initial binding interaction mediated by electrostatics that facilitates the rate of subsequent inhibited complex formation. This interface is supported by an in-depth kinetic analysis of the Get3-Get4/5 interaction confirming the two-step complex formation. These results allow us to generate a refined model for Get4/5 function in TA targeting.
Resumo:
DNA charge transport (CT) involves the efficient transfer of electrons or electron holes through the DNA π-stack over long molecular distances of at least 100 base-pairs. Despite this shallow distance dependence, DNA CT is sensitive to mismatches or lesions that disrupt π-stacking and is critically dependent on proper electronic coupling of the donor and acceptor moieties into the base stack. Favorable DNA CT is very rapid, occurring on the picosecond timescale. Because of this speed, electron holes equilibrate along the DNA π-stack, forming a characteristic pattern of DNA damage at low oxidation potential guanine multiplets. Furthermore, DNA CT may be used in a biological context. DNA processing enzymes with 4Fe4S clusters can perform DNA-mediated electron transfer (ET) self-exchange reactions with other 4Fe4S cluster proteins, even if the proteins are quite dissimilar, as long as the DNA-bound [4Fe4S]3+/2+ redox potentials are conserved. This mechanism would allow low copy number DNA repair proteins to find their lesions efficiently within the cell. DNA CT may also be used biologically for the long-range, selective activation of redox-active transcription factors. Within this work, we pursue other proteins that may utilize DNA CT within the cell and further elucidate aspects of the DNA-mediated ET self-exchange reaction of 4Fe4S cluster proteins.
Dps proteins, bacterial mini-ferritins that protect DNA from oxidative stress, are implicated in the survival and virulence of pathogenic bacteria. One aspect of their protection involves ferroxidase activity, whereby ferrous iron is bound and oxidized selectively by hydrogen peroxide, thereby preventing formation of damaging hydroxyl radicals via Fenton chemistry. Understanding the specific mechanism by which Dps proteins protect the bacterial genome could inform the development of new antibiotics. We investigate whether DNA-binding E. coli Dps can utilize DNA CT to protect the genome from a distance. An intercalating ruthenium photooxidant was employed to generate oxidative DNA damage via the flash-quench technique, which localizes to a low potential guanine triplet. We find that Dps loaded with ferrous iron, in contrast to Apo-Dps and ferric iron-loaded Dps which lack available reducing equivalents, significantly attenuates the yield of oxidative DNA damage at the guanine triplet. These data demonstrate that ferrous iron-loaded Dps is selectively oxidized to fill guanine radical holes, thereby restoring the integrity of the DNA. Luminescence studies indicate no direct interaction between the ruthenium photooxidant and Dps, supporting the DNA-mediated oxidation of ferrous iron-loaded Dps. Thus DNA CT may be a mechanism by which Dps efficiently protects the genome of pathogenic bacteria from a distance.
Further work focused on spectroscopic characterization of the DNA-mediated oxidation of ferrous iron-loaded Dps. X-band EPR was used to monitor the oxidation of DNA-bound Dps after DNA photooxidation via the flash-quench technique. Upon irradiation with poly(dGdC)2, a signal arises with g = 4.3, consistent with the formation of mononuclear high-spin Fe(III) sites of low symmetry, the expected oxidation product of Dps with one iron bound at each ferroxidase site. When poly(dGdC)2 is substituted with poly(dAdT)2, the yield of Dps oxidation is decreased significantly, indicating that guanine radicals facilitate Dps oxidation. The more favorable oxidation of Dps by guanine radicals supports the feasibility of a long-distance protection mechanism via DNA CT where Dps is oxidized to fill guanine radical holes in the bacterial genome produced by reactive oxygen species.
We have also explored possible electron transfer intermediates in the DNA-mediated oxidation of ferrous iron-loaded Dps. Dps proteins contain a conserved tryptophan residue in close proximity to the ferroxidase site (W52 in E. coli Dps). In comparison to WT Dps, in EPR studies of the oxidation of ferrous iron-loaded Dps following DNA photooxidation, W52Y and W52A mutants were deficient in forming the characteristic EPR signal at g = 4.3, with a larger deficiency for W52A compared to W52Y. In addition to EPR, we also probed the role of W52 Dps in cells using a hydrogen peroxide survival assay. Bacteria containing W52Y Dps survived the hydrogen peroxide challenge more similarly to those containing WT Dps, whereas cells with W52A Dps died off as quickly as cells without Dps. Overall, these results suggest the possibility of W52 as a CT hopping intermediate.
DNA-modified electrodes have become an essential tool for the study of the redox chemistry of DNA processing enzymes with 4Fe4S clusters. In many cases, it is necessary to investigate different complex samples and substrates in parallel in order to elucidate this chemistry. Therefore, we optimized and characterized a multiplexed electrochemical platform with the 4Fe4S cluster base excision repair glycosylase Endonuclease III (EndoIII). Closely packed DNA films, where the protein has limited surface accessibility, produce EndoIII electrochemical signals sensitive to an intervening mismatch, indicating a DNA-mediated process. Multiplexed analysis allowed more robust characterization of the CT-deficient Y82A EndoIII mutant, as well as comparison of a new family of mutations altering the electrostatics surrounding the 4Fe4S cluster in an effort to shift the reduction potential of the cluster. While little change in the DNA-bound midpoint potential was found for this family of mutants, likely indicating the dominant effect of DNA-binding on establishing the protein redox potential, significant variations in the efficiency of DNA-mediated electron transfer were apparent. On the basis of the stability of these proteins, examined by circular dichroism, we proposed that the electron transfer pathway in EndoIII can be perturbed not only by the removal of aromatic residues but also through changes in solvation near the cluster.
While the 4Fe4S cluster of EndoIII is relatively insensitive to oxidation and reduction in solution, we have found that upon DNA binding, the reduction potential of the [4Fe4S]3+/2+ couple shifts negatively by approximately 200 mV, bringing this couple into a physiologically relevant range. Demonstrated using electrochemistry experiments in the presence and absence of DNA, these studies do not provide direct molecular evidence for the species being observed. Sulfur K-edge X-ray absorbance spectroscopy (XAS) can be used to probe directly the covalency of iron-sulfur clusters, which is correlated to their reduction potential. We have shown that the Fe-S covalency of the 4Fe4S cluster of EndoIII increases upon DNA binding, stabilizing the oxidized [4Fe4S]3+ cluster, consistent with a negative shift in reduction potential. The 7% increase in Fe-S covalency corresponds to an approximately 150 mV shift, remarkably similar to DNA electrochemistry results. Therefore we have obtained direct molecular evidence for the shift in 4Fe4S reduction potential of EndoIII upon DNA binding, supporting the feasibility of our model whereby these proteins can utilize DNA CT to cooperate in order to efficiently find DNA lesions inside cells.
In conclusion, in this work we have explored the biological applications of DNA CT. We discovered that the DNA-binding bacterial ferritin Dps can protect the bacterial genome from a distance via DNA CT, perhaps contributing to pathogen survival and virulence. Furthermore, we optimized a multiplexed electrochemical platform for the study of the redox chemistry of DNA-bound 4Fe4S cluster proteins. Finally, we have used sulfur K-edge XAS to obtain direct molecular evidence for the negative shift in 4Fe4S cluster reduction potential of EndoIII upon DNA binding. These studies contribute to the understanding of DNA-mediated protein oxidation within cells.
Resumo:
I. Alkaline phosphatase activity in the developing sea urchin Lytechinus pictus has been investigated with respect to intensity at various stages, ionic requirements and intracellular localization. The activity per embryo remains the same in the unfertilized egg, fertilized egg and cleavage stages. At a time just prior to gastrulation (about 10 hours after fertilization) the activity per embryo begins to rise and increases after 300 times over the activity in the cleavage stages during the next 60 hours.
The optimum ionic strength for enzymatic activity shows a wide peak at 0.6 to 1.0. Calcium and magnesium show an additional optimum at a concentration in the range of 0.02 to 0.07 molar. EDTA at concentrations of 0.0001 molar and higher shows a definite inhibition of activity.
The intracellular localization of alkaline phosphatase in homogenates of 72-hour embryos has been studied employing the differential centrifugation method. The major portion of the total activity in these homogenates was found in mitochondrial and microsomal fractions with less than 5% in the nuclear fraction and less than 2% in the final supernatant. The activity could be released from all fractions by treatment with sodium deoxycholate.
II. The activation of protein biosynthesis at fertilization in eggs of the sea urchins Lytechinus pictus and Strongylocentrotus purpuratus has been studied in both intact eggs and cell-free homogenates. It is shown that homogenates from both unfertilized and fertilized eggs are dependent on potassium and magnesium ions for optimum amino acid incorporation activity and in the case of the latter the concentration range is quite narrow. Though the optimum magnesium concentrations appear to differ slightly in homogenates of unfertilized and fertilized eggs, in no case was it observed that unfertilized egg homogenates were stimulated to incorporate at a level comparable to that of the fertilized eggs.
An activation of amino acid incorporation into protein has also been shown to occur in parthenogenetically activated non-nucleate sea urchin egg fragments or homogenates thereof. This activation resembles that in the fertilized whole egg or fragment both in amount and pattern of activation. Furthermore, it is shown that polyribosomes form in these non-nucleate fragments upon artificial activation. These findings are discussed along with possible mechanisms for activation of the system at fertilization.
Resumo:
The first chapter of this thesis deals with automating data gathering for single cell microfluidic tests. The programs developed saved significant amounts of time with no loss in accuracy. The technology from this chapter was applied to experiments in both Chapters 4 and 5.
The second chapter describes the use of statistical learning to prognose if an anti-angiogenic drug (Bevacizumab) would successfully treat a glioblastoma multiforme tumor. This was conducted by first measuring protein levels from 92 blood samples using the DNA-encoded antibody library platform. This allowed the measure of 35 different proteins per sample, with comparable sensitivity to ELISA. Two statistical learning models were developed in order to predict whether the treatment would succeed. The first, logistic regression, predicted with 85% accuracy and an AUC of 0.901 using a five protein panel. These five proteins were statistically significant predictors and gave insight into the mechanism behind anti-angiogenic success/failure. The second model, an ensemble model of logistic regression, kNN, and random forest, predicted with a slightly higher accuracy of 87%.
The third chapter details the development of a photocleavable conjugate that multiplexed cell surface detection in microfluidic devices. The method successfully detected streptavidin on coated beads with 92% positive predictive rate. Furthermore, chambers with 0, 1, 2, and 3+ beads were statistically distinguishable. The method was then used to detect CD3 on Jurkat T cells, yielding a positive predictive rate of 49% and false positive rate of 0%.
The fourth chapter talks about the use of measuring T cell polyfunctionality in order to predict whether a patient will succeed an adoptive T cells transfer therapy. In 15 patients, we measured 10 proteins from individual T cells (~300 cells per patient). The polyfunctional strength index was calculated, which was then correlated with the patient's progress free survival (PFS) time. 52 other parameters measured in the single cell test were correlated with the PFS. No statistical correlator has been determined, however, and more data is necessary to reach a conclusion.
Finally, the fifth chapter talks about the interactions between T cells and how that affects their protein secretion. It was observed that T cells in direct contact selectively enhance their protein secretion, in some cases by over 5 fold. This occurred for Granzyme B, Perforin, CCL4, TNFa, and IFNg. IL- 10 was shown to decrease slightly upon contact. This phenomenon held true for T cells from all patients tested (n=8). Using single cell data, the theoretical protein secretion frequency was calculated for two cells and then compared to the observed rate of secretion for both two cells not in contact, and two cells in contact. In over 90% of cases, the theoretical protein secretion rate matched that of two cells not in contact.
Resumo:
In the last years farmed Pangasius (Tra-Pangasius, Pangasius hypophthalmus) from Vietnam has reached a considerable market share, whereas aquaculture of Asian Redtail Catfish (Hemibagrus wyckioides) is in its infancy. Recently it has been detected by food control authorities in Hamburg, that Pangasius fillets have been mislabelled and sold as fillets produced from Asian Redtail catfish. The necessity to improve the analytical methods for differentiation of Pangasius and Redtail Catfish prompted us to evaluate the suitability of isoelectric focusing (IEF) and DNA-analysis for identification of the two species. IEF of water soluble proteins was found to be a fast, reliable and economical method for differentiation of raw fillets of Pangasius and Redtail Catfish, as long as reference material is available. PCR-based DNA analysis was performed as follows: (i) amplification of a 464 bp segment of the cytochrome b gene; (ii) sequencing of the PCR product; (iii) comparison of the sequence with entries in GenBank using BLAST. The sequences of both species differed considerably, allowing the unequivocal differentiation between P. hypophthalmus and H. wyckioides. Kurzfassung Pangasius (Schlankwels, Tra-Pangasius, Pangasius hypophthalmus) hat sich innerhalb weniger Jahre zu einem bedeutenden Zuchtfisch entwickelt, während die Aquakultur des Asiatischen Rotflossenwelses (Hemibagrus wyckioides) in Vietnam noch in einem relativ kleinen Maßstab stattfindet. Kürzlich wurde von der Lebensmittelüberwachung in Hamburg nachgewiesen, dass im Handel erhältliche Filets mit der Deklaration „Rotflossenwels“ aus Pangasius hergestellt worden waren. Vor diesem Hintergrund wurden zwei Methoden auf ihre Eignung zur Differenzierung von Pangasius und Rotflossenwels geprüft. Es zeigte sich, dass sowohl die isoelektrische Fokussierung (IEF) wasserlöslicher Proteine als auch die PCR-basierte DNA-Analyse zur Unterscheidung beider Arten gut geeignet ist. Die IEF stellt eine schnelle und kostengünstige Untersuchungsmethode dar, die allerdings Referenzmaterial benötigt. Mit Hilfe der PCR (Polymerase-Kettenreaktion) wurde ein Abschnitt des Cytochrom b-Gens vervielfältigt und sequenziert. Die Sequenzen von P. hypophthalmus und H. wyckioides wiesen beträchtliche Unterschiede auf. Es wird diskutiert, wie sich durch Vergleich dieser Sequenzen mit Einträgen in Gendatenbanken unbekannte Proben beider Arten sicher zuordnen lassen.
Resumo:
I. The 3.7 Å Crystal Structure of Horse Heart Ferricytochrome C.
The crystal structure of horse heart ferricytochrome c has been determined to a resolution of 3.7 Å using the multiple isomorphous replacement technique. Two isomorphous derivatives were used in the analysis, leading to a map with a mean figure of merit of 0.458. The quality of the resulting map was extremely high, even though the derivative data did not appear to be of high quality.
Although it was impossible to fit the known amino acid sequence to the calculated structure in an unambiguous way, many important features of the molecule could still be determined from the 3.7 Å electron density map. Among these was the fact that cytochrome c contains little or no α-helix. The polypeptide chain appears to be wound about the heme group in such a way as to form a loosely packed hydrophobic core in the molecule.
The heme group is located in a cleft on the molecule with one edge exposed to the solvent. The fifth coordinating ligand is His 18 and the sixth coordinating ligand is probably neither His 26 nor His 33.
The high resolution analysis of cytochrome c is now in progress and should be completed within the next year.
II. The Application of the Karle-Hauptman Tangent Formula to Protein Phasing.
The Karle-Hauptman tangent formula has been shown to be applicable to the refinement of previously determined protein phases. Tests were made with both the cytochrome c data from Part I and a theoretical structure based on the myoglobin molecule. The refinement process was found to be highly dependent upon the manner in which the tangent formula was applied. Iterative procedures did not work well, at least at low resolution.
The tangent formula worked very well in selecting the true phase from the two possible phase choices resulting from a single isomorphous replacement phase analysis. The only restriction on this application is that the heavy atoms form a non-centric cluster in the unit cell.
Pages 156 through 284 in this Thesis consist of previously published papers relating to the above two sections. References to these papers can be found on page 155.
Resumo:
Fluorine nuclear magnetic resonance techniques have been used to study conformational processes in two proteins labeled specifically in strategic regions with covalently attached fluorinated molecules. In ribonuclease S, the ϵ-amino groups of lysines 1 and 7 were trifluoroacetylated without diminishing enzymatic activity. As inhibitors bound to the enzyme, changes in orientation of the peptide segment containing the trifluoroacetyl groups were detected in the nuclear magnetic resonance spectrum. pH Titration of one of the histidines in the active site produced a reversal of the conformational process.
Hemoglobin was trifluoroacetonylated at the reactive cysteine 93 of each β chain. The nuclear magnetic resonance spectrum of the fluorine moiety reflected changes in the equilibrium position of the β chain carboxy terminus upon binding of heme ligands and allosteric effectors. The chemical shift positions observed in deoxy- and methemoglobin were pH dependent, undergoing an abnormally steep apparent titration which was not observed in hemoglobin from which histidine β 146 had been removed enzymatically. The abnormal sharpness of these pH dependent processes is probably due to interactions between several ionizing groups.
The carbon monoxide binding process was studied by concurrent observation of the visible and nuclear magnetic resonance spectra of trifluoroacetonylated hemoglobin at fractional ligand saturations throughout the range 0-1.0. Comparison of the ligand binding process observed in these two ways yields evidence for a specific order of ligand binding. The sequence of events is sensitive to the pH and organic phosphate concentration of the medium, demonstrating the delicately balanced control system produced by interactions between the hemoglobin subunits and the effectors.
Resumo:
Dynamin-Related Protein 1 (Drp1), a large GTPase of the dynamin superfamily, is required for mitochondrial fission in healthy and apoptotic cells. Drp1 activation is a complex process that involves translocation from the cytosol to the mitochondrial outer membrane (MOM) and assembly into rings/spirals at the MOM, leading to membrane constriction/division. Similar to dynamins, Drp1 contains GTPase (G), bundle signaling element (BSE) and stalk domains. However, instead of the lipid-interacting Pleckstrin Homology (PH) domain present in the dynamins, Drp1 contains the so-called B insert or variable domain that has been suggested to play an important role in Drp1 regulation. Different proteins have been implicated in Drp1 recruitment to the MOM, although how MOM-localized Drp1 acquires its fully functional status remains poorly understood. We found that Drp1 can interact with pure lipid bilayers enriched in the mitochondrion-specific phospholipid cardiolipin (CL). Building on our previous study, we now explore the specificity and functional consequences of this interaction. We show that a four lysine module located within the B insert of Drp1 interacts preferentially with CL over other anionic lipids. This interaction dramatically enhances Drp1 oligomerization and assembly-stimulated GTP hydrolysis. Our results add significantly to a growing body of evidence indicating that CL is an important regulator of many essential mitochondrial functions.
Resumo:
Zusammenfassung Zur Identifizierung der folgenden vier Welsarten bzw. zwei Hybriden (Clarias gariepinus, Pangasius hypophthalmus, Pseudoplatystoma spp., Silurus glanis, Claresse® und Melander®) wurden die isolektrische Fokussierung (IEF) der wasserlöslichen Muskelproteine und die Polymerase-Kettenreaktion (PCR) zur Vervielfältigung und Sequenzierung eines Abschnittes aus dem Cytochrom b – Gen eingesetzt. Die IEF ergab artspezifische Proteinmuster mit hitzestabilen Proteinbanden im anodalen Gelbereich. Der afrikanische Wels (C. gariepinus) und das Hybriderzeugnis Melander® wiesen das gleiche Proteinmuster auf. Mittels DNA-Analyse ließen sich die Welsarten anhand ihrer Cytochrom b Gensequenzen eindeutig identifizieren. Auch hier zeigte der Welshybrid Melander® ein identisches Ergebnis wie der afrikanische Wels. Die Schwierigkeiten der Identifizierung von Tigerwelsen südamerikanischer Herkunft aus der Gattung Pseudoplatystoma werden diskutiert. Abstract Isoelectric focusing (IEF) of water soluble proteins and PCR-based DNA- analysis were used to differentiate between four catfish species (Clarias gariepinus, Pangasius hypophthalmus, Pseudoplatystoma spp., Silurus glanis) and two hybrids Claresse® and Melander®. Specific protein patterns have been obtained for all species and Claresse®, but in case of Melander® the identical pattern was observed as for the African catfish Clarias gariepinus. By sequencing the PCR products and application of BLAST, authenticity of the different catfish samples was confirmed. The cytochrome b gene sequences of Melander® and African catfish were identical. The difficulties of identifying catfishes of the genus Pseudoplatystoma are discussed.
Resumo:
Background: The high demanding computational requirements necessary to carry out protein motion simulations make it difficult to obtain information related to protein motion. On the one hand, molecular dynamics simulation requires huge computational resources to achieve satisfactory motion simulations. On the other hand, less accurate procedures such as interpolation methods, do not generate realistic morphs from the kinematic point of view. Analyzing a protein's movement is very similar to serial robots; thus, it is possible to treat the protein chain as a serial mechanism composed of rotational degrees of freedom. Recently, based on this hypothesis, new methodologies have arisen, based on mechanism and robot kinematics, to simulate protein motion. Probabilistic roadmap method, which discretizes the protein configurational space against a scoring function, or the kinetostatic compliance method that minimizes the torques that appear in bonds, aim to simulate protein motion with a reduced computational cost. Results: In this paper a new viewpoint for protein motion simulation, based on mechanism kinematics is presented. The paper describes a set of methodologies, combining different techniques such as structure normalization normalization processes, simulation algorithms and secondary structure detection procedures. The combination of all these procedures allows to obtain kinematic morphs of proteins achieving a very good computational cost-error rate, while maintaining the biological meaning of the obtained structures and the kinematic viability of the obtained motion. Conclusions: The procedure presented in this paper, implements different modules to perform the simulation of the conformational change suffered by a protein when exerting its function. The combination of a main simulation procedure assisted by a secondary structure process, and a side chain orientation strategy, allows to obtain a fast and reliable simulations of protein motion.
Resumo:
311 p.