950 resultados para Product life cycle - Evaluation
Resumo:
A survey of Isospora suis performed in 177 faecal samples from 30 swine farms detected thin wall type I. suis oocysts in seven samples. This type of oocyst measuring 23.9 by 20.7 mm had a retracted thin wall similar to that of the genus Sarcocystis. This type of oocysts, isolated from four different faecal samples, was inoculated in four-five-days-old piglets free of contamination in order to verify the life cycle and pathogenicity of the species. The pigs were kept in individual metal cages and fed with cow milk. Daily faecal collections and examinations were performed until the 21st day after infection. MacMaster and Sheather' s methods were used for oocyst counting and identification. Infected piglets produced yellowish-pasty diarrhoea with slight dehydration. The prepatent and patent periods were respectively from 6 to 9 and 3 to 10 days after infection. Oocyst elimination was interrupted on the 10th and 11th days after infection with biphasic cycles. Thin and thick wall oocysts were detected in the same faecal samples. Thin walls were not observed in unsporulated oocysts. The observations suggest that this type of oocysts could appear in specific strains which occur in the later stages of their development. These oocysts seem to be responsible for clinical and pathogenic signs of neonatal isosporosis in pigs.
Resumo:
The aim of the present research was to evaluate the potential of Nectomys rattus, the "water rat", to develop Schistosoma mansoni infection. Comparison with N. squamipes was carried out. Both species of rodents were submitted to transcutaneous infection using different infective cercariae loads: 50, 100 or 500. N. rattus showed high susceptibility to S. mansoni, with an infection rate of 71%. Rodents were able to excrete viable eggs of S. mansoni in the feaces during all infection period. For both species, the small intestine, followed by the liver and the large intestine, presented the highest concentration of eggs among the surveyed organs. Infection caused no animal death. Moreover, N. rattus accomplished the parasite's life cycle, by infecting the snails Biomphalaria glabrata and later Mus musculus. These evidences indicate that both N. rattus, as for N. squamipes are potential reservoirs for schistosomiasis in Brazil. Considering the fact that N. rattus and N. squamipes exist in the same natural ecosystems of S. mansoni, we suggest that these rodents must be regarded as influential factors in epidemiology surveys.
Resumo:
The molluscs Heleobia castellanosae and Ampullaria canaliculata and cichlid fishes were collected from an artificial pond at Tres de Febrero Park (Buenos Aires city), between June 1994 and May 1995. One hundred and eighty of 2,467 H. castellanosae examined were infected with pre-adults of Lobatostoma jungwirthi, 112 of them in concurrent infections with digeneans. L. jungwirthi was significantly more prevalent in larger snails, especially those infected with larval digeneans, but the prevalence of infection did not fluctuate significantly throughout the year. A. canaliculata and cichlids smaller than 10 cm were not infected, but larger Cichlasoma facetum harboured adults of L. jungwirthi in their intestines. Experimental infections of C. facetum and Gymnogeophagus meridionalis with pre-adult aspidogastreans obtained from H. castellanosae were successful. The development of L. jungwirthi in the snail host involves five arbitrary growth phases. Its life-cycle is heteroxenous, similar to that described for L. manteri, with H. castellanosae as the intermediate host and cichlid fishes as the definitive host in this pond.
Resumo:
All developmental transitions throughout the life cycle of a plant are influenced by light. In Arabidopsis, multiple photoreceptors including the UV-A/blue-sensing cryptochromes (cry1-2) and the red/far-red responsive phytochromes (phyA-E) monitor the ambient light conditions. Light-regulated protein stability is a major control point of photomorphogenesis. The ubiquitin E3 ligase COP1 (constitutively photomorphogenic 1) regulates the stability of several light-signaling components. HFR1 (long hypocotyl in far-red light) is a putative transcription factor with a bHLH domain acting downstream of both phyA and the cryptochromes. HFR1 is closely related to PIF1, PIF3, and PIF4 (phytochrome interacting factor 1, 3 and 4), but in contrast to the latter three, there is no evidence for a direct interaction between HFR1 and the phytochromes. Here, we show that the protein abundance of HFR1 is tightly controlled by light. HFR1 is an unstable phosphoprotein, particularly in the dark. The proteasome and COP1 are required in vivo to degrade phosphorylated HFR1. In addition, HFR1 can interact with COP1, consistent with the idea of COP1 directly mediating HFR1 degradation. We identify a domain, conserved among several bHLH class proteins involved in light signaling , as a determinant of HFR1 stability. Our physiological experiments indicate that the control of HFR1 protein abundance is important for a normal de-etiolation response.
Resumo:
Larval stages and adults of Procamallanus (Spirocamallanus) pereirai Annereaux, 1946 are described from naturally infected Paralonchurus brasiliensis (Steindachner) (Sciaenidae) from the coast of the State of Rio de Janeiro, Brazil. The translucent first-stage larvae have a denticulate process at the anterior end, no buccal capsule or esophagus undifferentiated into anterior muscular and posterior glandular parts and an elongate tail; third-stage larvae have a tail with three terminal projections, a buccal capsule divided into an anterior portion with 12-20 ridges running to the left and a posterior smooth portion, and an esophagus with muscular and glandular regions. Fourth-stage larvae exhibit a buccal capsule lacking a distinct basal ring with ridges running to the right and a tail with two terminal processes, as in adults. New host records are reported and their role in its life-cycle are discussed.