972 resultados para Procedure for Multiple Classifications
Resumo:
G protein-coupled receptors (GPCRs) are the largest family of proteins within the human genome. They consist of seven transmembrane (TM) helices, with a N-terminal region of varying length and structure on the extracellular side, and a C-terminus on the intracellular side. GPCRs are involved in transmitting extracellular signals to cells, and as such are crucial drug targets. Designing pharmaceuticals to target GPCRs is greatly aided by full-atom structural information of the proteins. In particular, the TM region of GPCRs is where small molecule ligands (much more bioavailable than peptide ligands) typically bind to the receptors. In recent years nearly thirty distinct GPCR TM regions have been crystallized. However, there are more than 1,000 GPCRs, leaving the vast majority of GPCRs with limited structural information. Additionally, GPCRs are known to exist in a myriad of conformational states in the body, rendering the static x-ray crystal structures an incomplete reflection of GPCR structures. In order to obtain an ensemble of GPCR structures, we have developed the GEnSeMBLE procedure to rapidly sample a large number of variations of GPCR helix rotations and tilts. The lowest energy GEnSeMBLE structures are then docked to small molecule ligands and optimized. The GPCR family consists of five subfamilies with little to no sequence homology between them: class A, B1, B2, C, and Frizzled/Taste2. Almost all of the GPCR crystal structures have been of class A GPCRs, and much is known about their conserved interactions and binding sites. In this work we particularly focus on class B1 GPCRs, and aim to understand that family’s interactions and binding sites both to small molecules and their native peptide ligands. Specifically, we predict the full atom structure and peptide binding site of the glucagon-like peptide receptor and the TM region and small molecule binding sites for eight other class B1 GPCRs: CALRL, CRFR1, GIPR, GLR, PACR, PTH1R, VIPR1, and VIPR2. Our class B1 work reveals multiple conserved interactions across the B1 subfamily as well as a consistent small molecule binding site centrally located in the TM bundle. Both the interactions and the binding sites are distinct from those seen in the more well-characterized class A GPCRs, and as such our work provides a strong starting point for drug design targeting class B1 proteins. We also predict the full structure of CXCR4 bound to a small molecule, a class A GPCR that was not closely related to any of the class A GPCRs at the time of the work.
Resumo:
Part I: Synthesis of L-Amino Acid Oxidase by a Serine- or Glycine-Requiring Strain of Neurospora
Wild-type cultures of Neurospora crassa growing on minimal medium contain low levels of L-amino acid oxidase, tyrosinase, and nicotinarnide adenine dinucleotide glycohydrase (NADase). The enzymes are derepressed by starvation and by a number of other conditions which are inhibitory to growth. L-amino acid oxidase is, in addition, induced by growth on amino acids. A mutant which produces large quantities of both L-amino acid oxidase and NADase when growing on minimal medium was investigated. Constitutive synthesis of L-amino acid oxidase was shown to be inherited as a single gene, called P110, which is separable from constitutive synthesis of NADase. P110 maps near the centromere on linkage group IV.
L-amino acid oxidase produced constitutively by P110 was partially purified and compared to partially purified L-amino acid oxidase produced by derepressed wild-type cultures. The enzymes are identical with respect to thermostability and molecular weight as judged by gel filtration.
The mutant P110 was shown to be an incompletely blocked auxotroph which requires serine or glycine. None of the enzymes involved in the synthesis of serine from 3-phosphoglyceric acid or glyceric acid was found to be deficient in the mutant, however. An investigation of the free intracellular amino acid pools of P110 indicated that the mutant is deficient in serine, glycine, and alanine, and accumulates threonine and homoserine.
The relationship between the amino acid requirement of P110 and its synthesis of L-amino acid oxidase is discussed.
Part II: Studies Concerning Multiple Electrophoretic Forms of Tyrosinase in Neurospora
Supernumerary bands shown by some crude tyrosinase preparations in paper electrophoresis were investigated. Genetic analysis indicated that the location of the extra bands is determined by the particular T allele present. The presence of supernumerary bands varies with the method used to derepress tyrosinase production, and with the duration of derepression. The extra bands are unstable and may convert to the major electrophoretic band, suggesting that they result from modification of a single protein. Attempts to isolate the supernumerary bands by continuous flow paper electrophoresis or density gradient zonal electrophoresis were unsuccessful.
Resumo:
A padronização para a fabricação de instrumentos endodônticos em aço inoxidável contribuiu para o desenvolvimento de novos aspectos geométricos. Surgiram propostas de alterações no desenho da haste helicoidal, da seção reta transversal, da ponta, da conicidade e do diâmetro na extremidade (D0). Concomitantemente, o emprego de ligas em Níquel-Titânio possibilitou a produção de instrumentos acionados a motor, largamente empregados hoje. A cada ano a indústria lança instrumentos com diversas modificações, sem, contudo, disponibilizar informações suficientes quanto às implicações clínicas destas modificações. Existe um crescente interesse no estudo dos diferentes aspectos geométricos e sua precisa metrologia. Tradicionalmente, a aferição de aspectos geométricos de instrumentos endodônticos é realizada visualmente através de microscopia ótica. Entretanto, esse procedimento visual é lento e subjetivo. Este trabalho propõe um novo método para a metrologia de instrumentos endodônticos baseado no microscópio eletrônico de varredura e na análise digital das imagens. A profundidade de campo do MEV permite obter a imagem de todo o relevo do instrumento endodôntico a uma distância de trabalho constante. Além disso, as imagens obtidas pelo detector de elétrons retro-espalhados possuem menos artefatos e sombras, tornando a obtenção e análise das imagens mais fáceis. Adicionalmente a análise das imagens permite formas de mensuração mais eficientes, com maior velocidade e qualidade. Um porta-amostras específico foi adaptado para obtenção das imagens dos instrumentos endodônticos. Ele é composto de um conector elétrico múltiplo com terminais parafusados de 12 pólos com 4 mm de diâmetro, numa base de alumínio coberta por discos de ouro. Os nichos do conector (terminais fêmeas) têm diâmetro apropriado (2,5 mm) para o encaixe dos instrumentos endodônticos. Outrossim, o posicionamento ordenado dos referidos instrumentos no conector elétrico permite a aquisição automatizada das imagens no MEV. Os alvos de ouro produzem, nas imagens de elétrons retro-espalhados, melhor contraste de número atômico entre o fundo em ouro e os instrumentos. No porta-amostras desenvolvido, os discos que compõem o fundo em ouro são na verdade, alvos do aparelho metalizador, comumente encontrados em laboratórios de MEV. Para cada instrumento, imagens de quatro a seis campos adjacentes de 100X de aumento são automaticamente obtidas para cobrir todo o comprimento do instrumento com a magnificação e resolução requeridas (3,12 m/pixel). As imagens obtidas são processadas e analisadas pelos programas Axiovision e KS400. Primeiro elas são dispostas num campo único estendido de cada instrumento por um procedimento de alinhamento semi-automático baseado na inter-relação com o Axiovision. Então a imagem de cada instrumento passa por uma rotina automatizada de análise de imagens no KS400. A rotina segue uma sequência padrão: pré-processamento, segmentação, pós-processamento e mensuração dos aspectos geométricos.
Resumo:
In this paper, we propose a novel method for measuring the coma aberrations of lithographic projection optics based on relative image displacements at multiple illumination settings. The measurement accuracy of coma can be improved because the phase-shifting gratings are more sensitive to the aberrations than the binary gratings used in the TAMIS technique, and the impact of distortion on displacements of aerial image can be eliminated when the relative image displacements are measured. The PROLITH simulation results show that, the measurement accuracy of coma increases by more than 25% under conventional illumination, and the measurement accuracy of primary coma increases by more than 20% under annular illumination, compared with the TAMIS technique. (c) 2007 Optical Society of America.
Resumo:
The present work deals with the problem of the interaction of the electromagnetic radiation with a statistical distribution of nonmagnetic dielectric particles immersed in an infinite homogeneous isotropic, non-magnetic medium. The wavelength of the incident radiation can be less, equal or greater than the linear dimension of a particle. The distance between any two particles is several wavelengths. A single particle in the absence of the others is assumed to scatter like a Rayleigh-Gans particle, i.e. interaction between the volume elements (self-interaction) is neglected. The interaction of the particles is taken into account (multiple scattering) and conditions are set up for the case of a lossless medium which guarantee that the multiple scattering contribution is more important than the self-interaction one. These conditions relate the wavelength λ and the linear dimensions of a particle a and of the region occupied by the particles D. It is found that for constant λ/a, D is proportional to λ and that |Δχ|, where Δχ is the difference in the dielectric susceptibilities between particle and medium, has to lie within a certain range.
The total scattering field is obtained as a series the several terms of which represent the corresponding multiple scattering orders. The first term is a single scattering term. The ensemble average of the total scattering intensity is then obtained as a series which does not involve terms due to products between terms of different orders. Thus the waves corresponding to different orders are independent and their Stokes parameters add.
The second and third order intensity terms are explicitly computed. The method used suggests a general approach for computing any order. It is found that in general the first order scattering intensity pattern (or phase function) peaks in the forward direction Θ = 0. The second order tends to smooth out the pattern giving a maximum in the Θ = π/2 direction and minima in the Θ = 0 , Θ = π directions. This ceases to be true if ka (where k = 2π/λ) becomes large (> 20). For large ka the forward direction is further enhanced. Similar features are expected from the higher orders even though the critical value of ka may increase with the order.
The first order polarization of the scattered wave is determined. The ensemble average of the Stokes parameters of the scattered wave is explicitly computed for the second order. A similar method can be applied for any order. It is found that the polarization of the scattered wave depends on the polarization of the incident wave. If the latter is elliptically polarized then the first order scattered wave is elliptically polarized, but in the Θ = π/2 direction is linearly polarized. If the incident wave is circularly polarized the first order scattered wave is elliptically polarized except for the directions Θ = π/2 (linearly polarized) and Θ = 0, π (circularly polarized). The handedness of the Θ = 0 wave is the same as that of the incident whereas the handedness of the Θ = π wave is opposite. If the incident wave is linearly polarized the first order scattered wave is also linearly polarized. The second order makes the total scattered wave to be elliptically polarized for any Θ no matter what the incident wave is. However, the handedness of the total scattered wave is not altered by the second order. Higher orders have similar effects as the second order.
If the medium is lossy the general approach employed for the lossless case is still valid. Only the algebra increases in complexity. It is found that the results of the lossless case are insensitive in the first order of kimD where kim = imaginary part of the wave vector k and D a linear characteristic dimension of the region occupied by the particles. Thus moderately extended regions and small losses make (kimD)2 ≪ 1 and the lossy character of the medium does not alter the results of the lossless case. In general the presence of the losses tends to reduce the forward scattering.
Resumo:
Optical Coherence Tomography(OCT) is a popular, rapidly growing imaging technique with an increasing number of bio-medical applications due to its noninvasive nature. However, there are three major challenges in understanding and improving an OCT system: (1) Obtaining an OCT image is not easy. It either takes a real medical experiment or requires days of computer simulation. Without much data, it is difficult to study the physical processes underlying OCT imaging of different objects simply because there aren't many imaged objects. (2) Interpretation of an OCT image is also hard. This challenge is more profound than it appears. For instance, it would require a trained expert to tell from an OCT image of human skin whether there is a lesion or not. This is expensive in its own right, but even the expert cannot be sure about the exact size of the lesion or the width of the various skin layers. The take-away message is that analyzing an OCT image even from a high level would usually require a trained expert, and pixel-level interpretation is simply unrealistic. The reason is simple: we have OCT images but not their underlying ground-truth structure, so there is nothing to learn from. (3) The imaging depth of OCT is very limited (millimeter or sub-millimeter on human tissues). While OCT utilizes infrared light for illumination to stay noninvasive, the downside of this is that photons at such long wavelengths can only penetrate a limited depth into the tissue before getting back-scattered. To image a particular region of a tissue, photons first need to reach that region. As a result, OCT signals from deeper regions of the tissue are both weak (since few photons reached there) and distorted (due to multiple scatterings of the contributing photons). This fact alone makes OCT images very hard to interpret.
This thesis addresses the above challenges by successfully developing an advanced Monte Carlo simulation platform which is 10000 times faster than the state-of-the-art simulator in the literature, bringing down the simulation time from 360 hours to a single minute. This powerful simulation tool not only enables us to efficiently generate as many OCT images of objects with arbitrary structure and shape as we want on a common desktop computer, but it also provides us the underlying ground-truth of the simulated images at the same time because we dictate them at the beginning of the simulation. This is one of the key contributions of this thesis. What allows us to build such a powerful simulation tool includes a thorough understanding of the signal formation process, clever implementation of the importance sampling/photon splitting procedure, efficient use of a voxel-based mesh system in determining photon-mesh interception, and a parallel computation of different A-scans that consist a full OCT image, among other programming and mathematical tricks, which will be explained in detail later in the thesis.
Next we aim at the inverse problem: given an OCT image, predict/reconstruct its ground-truth structure on a pixel level. By solving this problem we would be able to interpret an OCT image completely and precisely without the help from a trained expert. It turns out that we can do much better. For simple structures we are able to reconstruct the ground-truth of an OCT image more than 98% correctly, and for more complicated structures (e.g., a multi-layered brain structure) we are looking at 93%. We achieved this through extensive uses of Machine Learning. The success of the Monte Carlo simulation already puts us in a great position by providing us with a great deal of data (effectively unlimited), in the form of (image, truth) pairs. Through a transformation of the high-dimensional response variable, we convert the learning task into a multi-output multi-class classification problem and a multi-output regression problem. We then build a hierarchy architecture of machine learning models (committee of experts) and train different parts of the architecture with specifically designed data sets. In prediction, an unseen OCT image first goes through a classification model to determine its structure (e.g., the number and the types of layers present in the image); then the image is handed to a regression model that is trained specifically for that particular structure to predict the length of the different layers and by doing so reconstruct the ground-truth of the image. We also demonstrate that ideas from Deep Learning can be useful to further improve the performance.
It is worth pointing out that solving the inverse problem automatically improves the imaging depth, since previously the lower half of an OCT image (i.e., greater depth) can be hardly seen but now becomes fully resolved. Interestingly, although OCT signals consisting the lower half of the image are weak, messy, and uninterpretable to human eyes, they still carry enough information which when fed into a well-trained machine learning model spits out precisely the true structure of the object being imaged. This is just another case where Artificial Intelligence (AI) outperforms human. To the best knowledge of the author, this thesis is not only a success but also the first attempt to reconstruct an OCT image at a pixel level. To even give a try on this kind of task, it would require fully annotated OCT images and a lot of them (hundreds or even thousands). This is clearly impossible without a powerful simulation tool like the one developed in this thesis.
Resumo:
A specklegram in a multimode fiber (MMF) has successfully been used as a sensor for detecting external disturbance. Our experiments showed that the sensitivity in the sensor with a multiple longitudinal-mode laser as its source was much higher than that with a single longitudinal-mode laser. In addition, the near-field pattern observations indicated that the coupling between different transverse modes in the MMF is quite weak. Based on the experimental results, a theoretical model for the speckle formation is proposed, taking a bend-caused phase factor into consideration. It is shown in the theoretical analysis that the interferences between different longitudinal modes make a larger contribution to the specklegram signals. (C) 2007 Optical Society of America.
Resumo:
Specklegram in multimode fiber has successfully been used as a sensor for detecting mechanical disturbance. Speckles in a multimode pure silica grapefruit fiber are observed and compared to that of a step-index multimode fiber, showing different features between them. The sensitivities to external disturbance of two kinds of fiber were measured, based on single-multiple-single mode (SMS) fiber structure. Experimental results show that the grapefruit fiber shows higher sensitivity than does the step-index multimode fiber. The transmission spectrum of the grapefruit fiber was measured as well, showing some oscillation features that are significantly different from that of a step-index multimode fiber. The experiments may provide suggestions to understand the mechanisms of light propagation in grapefruit fibers. (D 2008 Optical Society of America.
Resumo:
A general class of single degree of freedom systems possessing rate-independent hysteresis is defined. The hysteretic behavior in a system belonging to this class is depicted as a sequence of single-valued functions; at any given time, the current function is determined by some set of mathematical rules concerning the entire previous response of the system. Existence and uniqueness of solutions are established and boundedness of solutions is examined.
An asymptotic solution procedure is used to derive an approximation to the response of viscously damped systems with a small hysteretic nonlinearity and trigonometric excitation. Two properties of the hysteresis loops associated with any given system completely determine this approximation to the response: the area enclosed by each loop, and the average of the ascending and descending branches of each loop.
The approximation, supplemented by numerical calculations, is applied to investigate the steady-state response of a system with limited slip. Such features as disconnected response curves and jumps in response exist for a certain range of system parameters for any finite amount of slip.
To further understand the response of this system, solutions of the initial-value problem are examined. The boundedness of solutions is investigated first. Then the relationship between initial conditions and resulting steady-state solution is examined when multiple steady-state solutions exist. Using the approximate analysis and numerical calculations, it is found that significant regions of initial conditions in the initial condition plane lead to the different asymptotically stable steady-state solutions.
Resumo:
O objetivo dos autores foi avaliar microscopicamente, a influência de dois regimes de aplicação do clodronato dissódico na movimentação dentária e reabsorção radicular de Rattus novergicus. Foram utilizados 63 ratos, adultos, machos, com dentição permanente completa e peso aproximado de 300g. Os animais foram divididos em três grupos com 21 espécimes cada: Grupo Controle, animais submetidos à movimentação dentária induzida sem aplicação do medicamento; Grupo A, animais submetidos à movimentação com aplicação do Clodronato por via subcutânea em dias alternados; Grupo B, animais submetidos à movimentação e aplicação da droga por via subcutânea apenas no quinto e décimo segundo dias. Para avaliar os eventos celulares que ocorrem durante todo o ciclo de movimentação, os grupos foram subdivididos em três, com sete animais cada um e foi realizada a eutanásia no sétimo, décimo e décimo quarto dias. Este procedimento foi realizado com anestesia por inalação de dietil-éter e administração intra-abdominal de 40mg/Kg de pentobarbital sódico. As peças foram incluídas em parafina e os cortes teciduais (4-6m), corados por Hematoxilina-Eosina, foram usados para observações gerais e avaliação quantitativa em microscópio de luz. A análise dos resultados foi feita utilizando análise de variância (ANOVA) e o teste de Tukey foi utilizado para comparações múltiplas entre as médias. Foi considerado o nível de significância em 5%. A taxa de movimentação foi menor no Grupo A quando comparado ao grupo controle sendo estatisticamente significante (p< 0,01). No Grupo B, a taxa de movimentação foi menor que no grupo controle e maior que no Grupo A, porém sem significância estatística. Para as variáveis lacunas de reabsorção e número de osteoclastos houve diferença estatisticamente significativa quando o grupo controle foi comparado aos dois outros grupos. De acordo com os resultados, o Clodronato reduz a reabsorção radicular e a movimentação dentária, mas este último aspecto pode ser minimizado a depender do regime de aplicação do medicamento.