1000 resultados para Potential Allergenicity
Resumo:
Germination of spores of Cyathea delgadii was carried out in soils collected in March 1997 (rainy season) at three depths (0-5, 5-10 and 10-15 cm) from the cerrado, open-cerrado, gallery forest and marsh at Moji Guaçu and cerradão, cerrado and gallery forest at Pedregulho, in Itirapina, both in the state of São Paulo, Brazil. Viability of spores mixed with soil and buried in the cerrado at the Reserva in Moji Guaçu were conducted for up to 10 months. The spores germinated in all soils. Germination in the soils was significantly lower than in distilled water. Germination was higher in soils from the gallery forest and cerrado than from open cerrado, cerradão and marsh. The germination was the same in the soil samples from the three depths of gallery forest, cerrado and cerradão. Spores of C. delgadii maintained viability longer when buried in cerrado soil than when dry stored at 4°C. After 10 months germination was 50.5% in buried spores against 3.8% in spores of the same age and harvest, stored at 4°C.
Resumo:
As the rapid development of the society as well as the lifestyle, the generation of commercial waste is getting more complicated to control. The situation of packaging waste and food waste – the main fractions of commercial waste in different countries in Europe and Asia is analyzed in order to evaluate and suggest necessary improvements for the existing waste management system in the city of Hanoi, Vietnam. From all waste generation sources of the city, a total amount of approximately 4000 tons of mixed waste is transported to the composting facility and the disposal site, which emits a huge amount of 1,6Mt of GHG emission to the environment. Recycling activity is taking place spontaneously by the informal pickers, leads to the difficulty in managing the whole system and uncertainty of the overall data. With a relative calculation, resulting in only approximately 0,17Mt CO2 equivalent emission, incinerator is suggested to be the solution of the problem with overloaded landfill and raising energy demand within the inhabitants.
Resumo:
An area's innate potential to regenerate represents a crucial factor for its conservation and management. The seed rain and seed bank are important agents in the regeneration process. Seed banks are particularly important in communities where there is a high proportion of obligate seeders. Rocky outcrops are habitats where most part of the plant species depends on their seeds to reproduce and maintain viable populations. Therefore, seed banks ought to be important in this vegetation physiognomy. We test the hypotheses that the seed bank of the rocky outcrops found in the rupestrian fields of "Serra do Cipó", Brazil, is richer in species and denser than those formed on different vegetation physiognomies neighboring the outcrops. We then compared species abundance, species richness and composition in the rocky outcrops' seed banks with those of sandy and peaty bogs, forests, gallery forests, and "cerrados". Furthermore, we report on the natural regeneration potential of these soils by assessing a greenhouse study on seedling emergence. Soil samples were collected from 0 to 5 and 5 to 10 cm of depth. Rocky outcrops had the poorest in species and less dense seed bank and showed segregation in species composition. Emergence was greater in the most superficial layer. However, soils on rocky outcrops showed the greatest proportion of endemic threatened species in their seed banks, demonstrating their importance for biodiversity conservation of the "Serra do Cipó" rupestrian fields.
Resumo:
Leiothrix flagellaris is a small clonal plant that grows in sandy/rocky, nutrient poor soils in the rocky grasslands ("campos rupestres") of southeastern Brazil. In the rainy season most of their flower heads differentiate into small rosettes, produced by pseudovivipary, and connected to the mother-plant by flexible, elongated stalks that can reach up to 90cm. Most of these rosettes remain suspended over rocks or over the sparse herbaceous surrounding vegetation, while a few arch low enough to come into contact with the surrounding soil and take root. These suspended rosettes can reach diameters comparable to currently rooted and reproductively active rosettes produced during previous reproductive periods. As the rooted rosettes grow up, their potential to generate and disperse new pseudoviviparous rosettes increase rapidly. This unusual guerrilla strategy of L. flagellaris seems to congregate a suit of traits that promote a fast increase in photosynthetic area and improve recruitment, thereby helping to circumvent dispersal and establishment failures in its severe environment.
Resumo:
Pumping systems account for up to 22 % of the energy consumed by electrical motors in European industry. Many studies have shown that there is also a lot of potential for energy savings in these systems with the improvement of devices, flow control or surrounding sys-tem. The best method for more energy efficient pumping has to be found for each system separately. This thesis studies how energy saving potential in reservoir pumping system is affected by surrounding variables, such as the static head variation and friction factor. The objective is to create generally applicable graphs to quickly compare methods for reducing pumping system’s energy costs. The gained results are several graphs showcasing how the chosen variables affect energy saving potential of the pumping system in one specific case. To judge if these graphs are generally applicable, more testing with different pumps and environments are required.
Resumo:
Temperate and temperate x tropical germplasms were introduced into the maize breeding of the Department of Genetics (ESALQ-USP). Twenty populations designated as P-1 to P-20 and a check population were evaluated in a randomized complete block design with two replications at Piracicaba, SP, Brazil. Plots were 2.0 m long, spaced 1.0 m apart, with 10 plants per plot after thinning. The following traits were evaluated: PH, plant height; EH, ear height; TB, tassel branch number; KW, 100 kernels weight; EL, ear length; ED, ear diameter; KR, kernels per row, and RN, number of rows of kernels. The means of the exotic populations showed a variation in performance for all traits. The population means were greater than check means for KW, EL, and KR. Populations P-9, P-10, P-12, and P-13 showed low relative ear placement values (EH/PH index), indicating that these materials could contribute to lower ear placement in local populations. P-1 and P-9 showed a high potential to reduce TB. The phenotypic correlation coefficients among populations were positive for most combinations, except for RN with PH, EH, TB, and KW. Predictions of 19 composite means were obtained for all traits.
Resumo:
Hyperthermia, either alone or combined with radio-, immuno- or chemotherapy, can control tumor growth, but its effect on metastasis is still controversial. In the present study, we investigated the influence of hyperthermia on the metastatic potential of B16-F10 murine melanoma cells. Incubation of melanoma cells at 43ºC for 30 min led to a significant decrease in cell viability. About half of the cells survived the acute exposure to heat. These thermoresistant cells displayed a longer lag phase as compared to control unheated B16-F10 melanoma cells. Other parameters of cell growth such as doubling time and saturation density were equivalent in both control and thermoresistant cells. Both control and treated cells were adherent, but thermoresistant cells failed to spread during the first 48 h after heat exposure. B16-F10 cells colonize the lungs of C57BL/6J mice when injected intravenously; the number of lung colonies is a measure of the metastatic potential of injected cells. Median values of 22, 10.5 and 31 colonies per injected mouse were observed for control cells, cells heated to 43ºC for 30 min and thermoresistant cells, respectively, with statistically significant differences between groups (Mann-Whitney test, P<0.02). Thus, despite its cytotoxic action, heat exposure induced the acquisition of a more metastatic phenotype in a subpopulation of B16-F10 cells
Resumo:
Current methods for recording field potentials with tungsten electrodes make it virtually impossible to use the same recording electrode also as a lesioning electrode, for example for histological confirmation of the recorded site, because the lesioning procedure usually wears off the tungsten tip. Therefore, the electrode would have to be replaced after each lesioning procedure, which is a very high cost solution to the problem. We present here a low cost, easy to make, high quality glass pipette-carbon fiber microelectrode that shows resistive, signal/noise and electrochemical coupling advantages over tungsten electrodes. Also, currently used carbon fiber microelectrodes often show problems with electrical continuity, especially regarding electrochemical applications using a carbon-powder/resin mixture, with consequent low performance, besides the inconvenience of handling such a mixture. We propose here a new method for manufacturing glass pipette-carbon fiber microelectrodes with several advantages when recording intracerebral field potentials
Resumo:
In routine studies of sensory nerve conduction, only fibers e7 µm in diameter are analyzed. The late components which originate from thinner fibers are not detected. This explains why a normal sensory action potential (SAP) may be recorded in patients with peripheral neuropathies and sensory loss. In the present study we investigated the late component of the median SAP with a near nerve needle electrode technique in 14 normal volunteers (7 men and 7 women), aged 34.5 ± 14.8 years. The stimulus consisted of rectangular pulses of 0.2-ms duration at a frequency of 1 Hz with an intensity at least 6 times greater than the threshold value for the main component. Five hundred to 2000 sweep averagings were performed. The duration of analysis was 40 or 50 ms and the wave analysis frequency was 200 (-6 dB/oct) to 3000 Hz (-12 dB/oct). We used an apparatus with a two-channel amplifier system, 200 MW or more of entry impedance and a noise level of 0.7 µVrms or less. The main component mean amplitude, conduction velocity and latency and the late component mean amplitude, conduction velocity and latency were respectively (mean ± SD): 26.5 ± 5.42 µV, 56.8 ± 5.42 m/s, 3.01 ± 0.31 ms, 0.12 ± 0.04 µV, 16.4 ± 2.95 m/s and 10.6 ± 2.48 ms. More sophisticated equipment has an internal noise of 0.6 µVrms. These data demonstrate that the technique can now be employed to study thin fiber neuropathies, like in leprosy, using commercial electromyographs, even in non-academic practices
Resumo:
Interleukin-15 (IL-15) is a newly-discovered cytokine that is produced by activated monocytes early in the course of the innate immune response. IL-15 is able to bind to components of the interleukin-2 receptor (IL-2R) despite the fact that it has no sequence homology with IL-2. IL-15 stimulates human natural killer cell proliferation, cytotoxicity, and cytokine production and can substitute for IL-2 under most conditions. In vitro studies indicate that monocyte-derived IL-15 may be an important determinant of IFN-gamma production by NK cells. In addition, IL-15 is able to promote the survival of natural killer cells under serum-free conditions. The IL-15 receptor is a heterotrimeric complex which is composed of the IL-2Rß and g chains in combination with a unique alpha chain (IL-15a). The IL-15Ra chain has strong sequence homology to the IL-2Ra chain and confers high affinity binding to the IL-15R. In contrast to IL-2, transcript for IL-15 and IL-15a is expressed in a number of tissues and indicates that IL-15 may be an important ligand for cells that express components of the IL-2R
Resumo:
The Ca2+-modulated, dimeric proteins of the EF-hand (helix-loop-helix) type, S100A1 and S100B, that have been shown to inhibit microtubule (MT) protein assembly and to promote MT disassembly, interact with the type III intermediate filament (IF) subunits, desmin and glial fibrillary acidic protein (GFAP), with a stoichiometry of 2 mol of IF subunit/mol of S100A1 or S100B dimer and an affinity of 0.5-1.0 µM in the presence of a few micromolar concentrations of Ca2+. Binding of S100A1 and S100B results in inhibition of desmin and GFAP assemblies into IFs and stimulation of the disassembly of preformed desmin and GFAP IFs. S100A1 and S100B interact with a stretch of residues in the N-terminal (head) domain of desmin and GFAP, thereby blocking the head-to-tail process of IF elongation. The C-terminal extension of S100A1 (and, likely, S100B) represents a critical part of the site that recognizes desmin and GFAP. S100B is localized to IFs within cells, suggesting that it might have a role in remodeling IFs upon elevation of cytosolic Ca2+ concentration by avoiding excess IF assembly and/or promoting IF disassembly in vivo. S100A1, that is not localized to IFs, might also play a role in the regulation of IF dynamics by binding to and sequestering unassembled IF subunits. Together, these observations suggest that S100A1 and S100B may be regarded as Ca2+-dependent regulators of the state of assembly of two important elements of the cytoskeleton, IFs and MTs, and, potentially, of MT- and IF-based activities.
Resumo:
In this work, the feasibility of the floating-gate technology in analog computing platforms in a scaled down general-purpose CMOS technology is considered. When the technology is scaled down the performance of analog circuits tends to get worse because the process parameters are optimized for digital transistors and the scaling involves the reduction of supply voltages. Generally, the challenge in analog circuit design is that all salient design metrics such as power, area, bandwidth and accuracy are interrelated. Furthermore, poor flexibility, i.e. lack of reconfigurability, the reuse of IP etc., can be considered the most severe weakness of analog hardware. On this account, digital calibration schemes are often required for improved performance or yield enhancement, whereas high flexibility/reconfigurability can not be easily achieved. Here, it is discussed whether it is possible to work around these obstacles by using floating-gate transistors (FGTs), and analyze problems associated with the practical implementation. FGT technology is attractive because it is electrically programmable and also features a charge-based built-in non-volatile memory. Apart from being ideal for canceling the circuit non-idealities due to process variations, the FGTs can also be used as computational or adaptive elements in analog circuits. The nominal gate oxide thickness in the deep sub-micron (DSM) processes is too thin to support robust charge retention and consequently the FGT becomes leaky. In principle, non-leaky FGTs can be implemented in a scaled down process without any special masks by using “double”-oxide transistors intended for providing devices that operate with higher supply voltages than general purpose devices. However, in practice the technology scaling poses several challenges which are addressed in this thesis. To provide a sufficiently wide-ranging survey, six prototype chips with varying complexity were implemented in four different DSM process nodes and investigated from this perspective. The focus is on non-leaky FGTs, but the presented autozeroing floating-gate amplifier (AFGA) demonstrates that leaky FGTs may also find a use. The simplest test structures contain only a few transistors, whereas the most complex experimental chip is an implementation of a spiking neural network (SNN) which comprises thousands of active and passive devices. More precisely, it is a fully connected (256 FGT synapses) two-layer spiking neural network (SNN), where the adaptive properties of FGT are taken advantage of. A compact realization of Spike Timing Dependent Plasticity (STDP) within the SNN is one of the key contributions of this thesis. Finally, the considerations in this thesis extend beyond CMOS to emerging nanodevices. To this end, one promising emerging nanoscale circuit element - memristor - is reviewed and its applicability for analog processing is considered. Furthermore, it is discussed how the FGT technology can be used to prototype computation paradigms compatible with these emerging two-terminal nanoscale devices in a mature and widely available CMOS technology.
Resumo:
The aim of this thesis is to study whether the use of biomethane as a transportation fuel is reasonable from climate change perspective. In order to identify potentials and challenges for the reduction of greenhouse gas (GHG) emissions, this dissertation focuses on GHG emission comparisons, on feasibility studies and on the effects of various calculation methodologies. The GHG emissions calculations are carried out by using life cycle assessment (LCA) methodologies. The aim of these LCA studies is to figure out the key parameters affecting the GHG emission saving potential of biomethane production and use and to give recommendations related to methodological choices. The feasibility studies are also carried out from the life cycle perspective by dividing the biomethane production chain for various operators along the life cycle of biomethane in order to recognize economic bottlenecks. Biomethane use in the transportation sector leads to GHG emission reductions compared to fossil transportation fuels in most cases. In addition, electricity and heat production from landfill gas, biogas or biomethane leads to GHG reductions as well. Electricity production for electric vehicles is also a potential route to direct biogas or biomethane energy to transportation sector. However, various factors along the life cycle of biomethane affect the GHG reduction potentials. Furthermore, the methodological selections have significant effects on the results. From economic perspective, there are factors related to different operators along the life cycle of biomethane, which are not encouraging biomethane use in the transportation sector. To minimize the greenhouse gas emissions from the life cycle of biomethane, waste feedstock should be preferred. In addition, energy consumption, methane leakages, digestate utilization and the current use of feedstock or biogas are also key factors. To increase the use of biomethane in the transportation sector, political steering is needed to improve the feasibility for the operators. From methodological perspective, it is important to recognize the aim of the life cycle assessment study. The life cycle assessment studies can be divided into two categories: 1.) To produce average GHG information of biomethane to evaluate the acceptability of biomethane use compared to fossil transportation fuels. 2.) To produce GHG information of biomethane related to actual decision-making situations. This helps to figure out the actual GHG emission changes in cases when feedstock, biogas or biomethane are already in other use. For example directing biogas from electricity production to transportation use does not necessarily lead to additional GHG emission reductions. The use of biomethane seems to have a lot of potential for the reduction of greenhouse gas emissions as a transportation fuel. However, there are various aspects related to production processes, to the current use of feedstock or biogas and to the feasibility that have to be taken into account.
Resumo:
Recent research has shown that receptor-ligand interactions between surfaces of communicating cells are necessary prerequisites for cell proliferation, cell differentiation and immune defense. Cell-adhesion events have also been proposed for pathological conditions such as cancer growth, metastasis, and host-cell invasion by parasites such as Trypanosoma cruzi. RNA and DNA aptamers (aptus = Latin, fit) that have been selected from combinatorial nucleic acid libraries are capable of binding to cell-adhesion receptors leading to a halt in cellular processes induced by outside signals as a consequence of blockage of receptor-ligand interactions. We outline here a novel approach using RNA aptamers that bind to T. cruzi receptors and interrupt host-cell invasion in analogy to existing procedures of blocking selectin adhesion and function in vitro and in vivo.
Resumo:
Terpineol, a volatile terpenoid alcohol of low toxicity, is widely used in the perfumery industry. It is an important chemical constituent of the essential oil of many plants with widespread applications in folk medicine and in aromatherapy. The effects of terpineol on the compound action potential (CAP) of rat sciatic nerve were studied. Terpineol induced a dose-dependent blockade of the CAP. At 100 µM, terpineol had no demonstrable effect. At 300 µM terpineol, peak-to-peak amplitude and conduction velocity of CAP were significantly reduced at the end of 180-min exposure of the nerve to the drug, from 3.28 ± 0.22 mV and 33.5 ± 7.05 m/s, respectively, to 1.91 ± 0.51 mV and 26.2 ± 4.55 m/s. At 600 µM, terpineol significantly reduced peak-to-peak amplitude and conduction velocity from 2.97 ± 0.55 mV and 32.8 ± 3.91 m/s to 0.24 ± 0.23 mV and 2.72 ± 2.72 m/s, respectively (N = 5). All these effects developed slowly and were reversible upon 180-min washout.