986 resultados para Portland Harbor
Resumo:
OBJECTIVE: To investigate linkage to chromosome 1q and 11q region for lumbar spine, femoral neck and total body BMD and volumetric BMD in Brazilian sister adolescents aged 10-20-year-old and 57 mothers. METHODS: We evaluated 161 sister pairs (n=329) aged 10-20 years old and 57 of their mothers in this study. Physical traits and lifestyle factors were collected as covariates for lumbar spine (LS), femoral neck (FN) and total body (TB) BMD and bone mineral apparent density (BMAD). We selected nine microsatellite markers in chromosome 1q region (spanning nearly 33cM) and eight in chromosome 11q region (spanning nearly 34cM) to perform linkage analysis. RESULTS: The highest LOD score values obtained from our data were in sister pairs LS BMAD analysis. Their values were: 1.32 (P<0.006), 2.61 (P<0.0002) and 2.44 (P<0.0004) in D1S218, D1S2640 and D1S2623 markers, respectively. No significant LOD score was found with LS and FN BMD/BMAD in chromosome 11q region. Only TB BMD showed significant linkage higher than 1.0 for chromosome 11q region in the markers D11S4191 and D11S937. DISCUSSION/CONCLUSIONS: Our results provided suggestive linkage for LS BMAD at D1S2640 marker in adolescent sister pairs and suggest a possible candidate gene (LHX4) related to adolescent LS BMAD in this region. These results reinforce chromosome 1q21-23 as a candidate region to harbor one or more bone formation/maintenance gene. In the other hand, it did not repeat for chromosome 11q12-13 in our population.
Resumo:
The bearing capacity and service life of a pavement is affected adversely by the presence of undrained water in the pavement layers. In cold winter climates like in Iowa, this problem is magnified further by the risk of frost damage when water is present. Therefore, well-performing subsurface drainage systems form an important aspect of pavement design by the Iowa Department of Transportation (DOT). However, controversial findings are also reported in the literature regarding the benefits of subsurface drainage. The goal of this research was not to investigate whether subdrains are needed in Iowa pavements, but to conduct an extensive performance review of primary interstate pavement subdrains in Iowa, determine the cause of the problem if there are drains that are not functioning properly, and investigate the effect of poor subdrain performance due to improper design, construction, and maintenance on pavement surface distresses, if any. An extensive literature review was performed covering national-level and state-level research studies mainly focusing on the effects of subsurface drainage on performance of asphalt and concrete pavements. Several studies concerning the effects of a recycled portland cement concrete (RPCC) subbase on PCC pavement drainage systems were also reviewed. A detailed forensic test plan was developed in consultation with the project technical advisory committee (TAC) for inspecting and evaluating the Iowa pavement subdrains. Field investigations were conducted on 64 selected (jointed plain concrete pavement/JPCP and hot-mix asphalt/HMA) pavement sites during the fall season of 2012 and were mainly focused on the drainage outlet conditions. Statistical analysis was conducted on the compiled data from field investigations to further investigate the effect of drainage on pavement performance. Most Iowa subsurface drainage system outlet blockage is due to tufa, sediment, and soil. Although higher blockage rates reduce the flow rate of water inside outlet pipes, it does not always stop water flowing from inside the outlet pipe to outside the outlet pipe unless the outlet is completely blocked. Few pavement surface distresses were observed near blocked subsurface drainage outlet spots. More shoulder distresses (shoulder drop or cracking) were observed near blocked drainage outlet spots compared to open ones. Both field observations and limited performance analysis indicate that drainage outlet conditions do not have a significant effect on pavement performance. The use of RPCC subbase in PCC pavements results in tufa formation, a primary cause of drainage outlet blockage in JPCP. Several useful recommendations to potentially improve Iowa subdrain performance, which warrant detailed field investigations, were made
Resumo:
The bearing capacity and service life of a pavement is affected adversely by the presence of undrained water in the pavement layers. In cold winter climates like in Iowa, this problem is magnified further by the risk of frost damage when water is present. Therefore, well-performing subsurface drainage systems form an important aspect of pavement design by the Iowa Department of Transportation (DOT). However, controversial findings are also reported in the literature regarding the benefits of subsurface drainage. The goal of this research was not to investigate whether subdrains are needed in Iowa pavements, but to conduct an extensive performance review of primary interstate pavement subdrains in Iowa, determine the cause of the problem if there are drains that are not functioning properly, and investigate the effect of poor subdrain performance due to improper design, construction, and maintenance on pavement surface distresses, if any. An extensive literature review was performed covering national-level and state-level research studies mainly focusing on the effects of subsurface drainage on performance of asphalt and concrete pavements. Several studies concerning the effects of a recycled portland cement concrete (RPCC) subbase on PCC pavement drainage systems were also reviewed. A detailed forensic test plan was developed in consultation with the project technical advisory committee (TAC) for inspecting and evaluating the Iowa pavement subdrains. Field investigations were conducted on 64 selected (jointed plain concrete pavement/JPCP and hot-mix asphalt/HMA) pavement sites during the fall season of 2012 and were mainly focused on the drainage outlet conditions. Statistical analysis was conducted on the compiled data from field investigations to further investigate the effect of drainage on pavement performance. Most Iowa subsurface drainage system outlet blockage is due to tufa, sediment, and soil. Although higher blockage rates reduce the flow rate of water inside outlet pipes, it does not always stop water flowing from inside the outlet pipe to outside the outlet pipe unless the outlet is completely blocked. Few pavement surface distresses were observed near blocked subsurface drainage outlet spots. More shoulder distresses (shoulder drop or cracking) were observed near blocked drainage outlet spots compared to open ones. Both field observations and limited performance analysis indicate that drainage outlet conditions do not have a significant effect on pavement performance. The use of RPCC subbase in PCC pavements results in tufa formation, a primary cause of drainage outlet blockage in JPCP. Several useful recommendations to potentially improve Iowa subdrain performance, which warrant detailed field investigations, were made.
Resumo:
Supplementary cementitious materials (SCM) have become common parts of modern concrete practice. The blending of two or three cementitious materials to optimize durability, strength, or economics provides owners, engineers, materials suppliers, and contractors with substantial advantages over mixtures containing only portland cement. However, these advances in concrete technology and engineering have not always been adequately captured in specifications for concrete. Users need specific guidance to assist them in defining the performance requirements for a concrete application and the selection of optimal proportions of the cementitious materials needed to produce the required durable concrete. The fact that blended cements are currently available in many regions increases options for mixtures and thus can complicate the selection process. Both Portland and blended cements have already been optimized by the manufacturer to provide specific properties (such as setting time, shrinkage, and strength gain). The addition of SCMs (as binary, ternary, or even more complex mixtures) can alter these properties, and therefore has the potential to impact the overall performance and applications of concrete. This report is the final of a series of publications describing a project aimed at addressing effective use of ternary systems. The work was conducted in several stages and individual reports have been published at the end of each stage.
Resumo:
Any transportation infrastructure system is inherently concerned with durability and performance issues. The proportioning and uniformity control of concrete mixtures are critical factors that directly affect the longevity and performance of the portland cement concrete pavement systems. At present, the only means available to monitor mix proportions of any given batch are to track batch tickets created at the batch plant. However, this does not take into account potential errors in loading materials into storage silos, calibration errors, and addition of water after dispatch. Therefore, there is a need for a rapid, cost-effective, and reliable field test that estimates the proportions of as-delivered concrete mixtures. In addition, performance based specifications will be more easily implemented if there is a way to readily demonstrate whether any given batch is similar to the proportions already accepted based on laboratory performance testing. The goal of the present research project is to investigate the potential use of a portable x-ray fluorescence (XRF) technique to assess the proportions of concrete mixtures as they are delivered. Tests were conducted on the raw materials, paste and mortar samples using a portable XRF device. There is a reasonable correlation between the actual and calculated mix proportions of the paste samples, but data on mortar samples was less reliable.
Resumo:
Optical imaging techniques are well suited for following the dynamics of physiological processes in living cells. Total internal reflection fluorescence (TIRF) microscopy based on evanescent wave illumination (EWi) allows spectacular, real-time visualization of individual vesicle movements, fusions, and retrievals at the cell surface (i.e., within 100 nm of the plasma membrane). TIRF microscopy is an ideal approach for studying the properties of exocytosis and recycling in cultured astrocytes, particularly because these cells have a rather flat surface and contain secretory vesicles with sparse distribution. Among all populations of secretory vesicles, we focus here on synaptic-like microvesicles (SLMVs). We illustrate how TIRF microscopy using EWi is useful to study exocytosis and recycling of SLMVs at the single-vesicle level and, when combined with epifluorescence illumination (EPIi), can provide detailed information on the kinetics of exocytosis, endocytosis, and re-acidification at the whole-cell level.
Resumo:
The overall objective of the work summarized in this report and in the interim report was to study the effects of targeted implement-of-husbandry loads. This report is to complement phase I of this work, which was summarized in the interim report, entitled Response of Iowa Pavements to Heavy Agricultural Loads (December 1999). The response of newly constructed Portland cement concrete (PCC) and asphalt cement concrete (ACC) pavements under semitruck, single-axle single-tire grain wagon, single-axle dual-tire grain wagon, tandem and tridem tank wagons were summarized in the interim report. Phase II of this project, presented herein, was to complete the study in terms of how tracked agricultural vehicles relate to the reference 20,000-pound single-axle semi-truck. In this report the response of these two pavements under a tracked grain wagon is documented.
Resumo:
Iowa's county road system includes several thousands of miles of paved roads which consist of Portland cement concrete (PCC) surfaces, asphalt cement concrete (ACC) surfaces, and combinations of thin surface treatments such as seal coats and slurries. These pavements are relatively thin pavements when compared to the state road system and therefore are more susceptible to damage from heavy loads for which they were not designed. As the size of the average farm in Iowa has increased, so have the size and weights of implements of husbandry. These implements typically have fewer axles than a truck hauling the same weight would be required to have; in other words, some farm implements have significantly higher axle weights than would be legal for semi-trailers. Since stresses induced in pavements are related to a vehicle's axle weight, concerns have been raised among county and state engineers regarding the possible damage to roadway surfaces that could result from some of these large implements of husbandry. Implements of husbandry on Iowa's highway system have traditionally not been required to comply with posted weight embargo on bridges or with regulations regarding axle-weight limitations on roadways. In 1999, with House File 651, the Iowa General Assembly initiated a phased program of weight restrictions for implements of husbandry. To help county and state engineers and the Iowa legislature understand the effects of implements of husbandry on Iowa's county roads, the following study was conducted. The study investigated the effects of variously configured grain carts, tank wagons, and fence-line feeders on Iowa's roadways, as well as the possible mitigating effects of flotation tires and tracks on the transfer of axle weights to the roadway. The study was accomplished by conducting limited experimental and analytical research under static loading conditions
Resumo:
This project consisted of slipforming a 4-inch thick econocrete subbase on a 6-mile section of US 63. The project location extends south from one mile south of Denver, Iowa to Black Hawk County Road C-66 and consisted of the reconstruction and new construction of a divided four-lane facility. The econocrete was placed 27.3 feet wide in a single pass. Fly ash was used in this field study to replace 30, 45 and 60 percent of the portland cement in three portland cement econocrete base paving mixes. The three mixes contained 300, 350 and 400 pounds of cementitious material per cubic yard. Two Class "C" ashes from Iowa approved sources were used. The ash was substituted on the basis of one pound of ash for each pound of cement removed. The work was done October 6-29, 1987 and May 25-June 9, 1988. The twelve subbase mixes were placed in sections 2500 to 3000 feet in length on both the north and southbound roadways. Compressive strengths of all mixes were determined at 3 and 28 days of age. Flexural strengths of all mixes were determined at 7 and 14 days. In all cases strengths were adequate. The freeze/thaw durability of the econocrete mixes used was reduced by increased fly ash levels but remained above acceptable limits. The test results demonstrate the feasibility of producing econocrete with satisfactory properties even using fly ash at substitution rates up to 45 percent.
Resumo:
Efforts to eliminate rutting on the Interstate system have resulted in 3/4 in. aggregate mixes, with 75 blow Marshall, 85% crushed aggregate mix designs. On a few of these projects paved in 1988-1989, water has appeared on the surfaces. Some conclusions have been reached by visual on-sight investigations that the water is coming from surface water, rain and melting snow gaining entry into the surface asphalt mixture, then coming back out in selected areas. Cores were taken from several Interstate projects and tested for permeability to investigate the surface water theory that supposedly happens with only the 3/4 in. mixtures. All cores were of asphalt overlays over portland cement concrete, except for the Clarke County project which is full depth AC. The testing consisted of densities, permeabilities, voids by high pressure airmeter (HPAM), extraction, gradations, AC content, and film thicknesses. Resilient modulus, indirect tensile and retained strengths after freeze/thaw were also done. All of the test results are about as expected. Permeabilities, the main reason for testing, ranged from 0.00 to 2.67 ft per day and averages less than 1/2 ft per day if the following two tests are disregarded. One test on each binder course came out to 15.24 ft/day, and a surface course at 13.78 ft/day but these are not out of supposedly problem projects.
Resumo:
The objective of this research was to evaluate the quality (angularity, mortar strengths and alkali-silica reactivity) of fine aggregate for Iowa portland cement concrete (PCC) pavements. Sands were obtained from 30 sources representative of fine aggregate across Iowa. The gradation, fineness modulus and mortar strengths were determined for all sands. Angularity was evaluated using a new National Aggregate Association (NAA) flow test. The NAA uncompacted void values are significantly affected by the percent of crushed particles and are a good measure of fine aggregate angularity. The alkali-silica reactivity of Iowa sands was measured by the ASTM P214 test. By P214 many Iowa sands were identified as being reactive while only two were innocuous. More research is needed on P214 because pavement performance history has shown very little alkali-silica reactivity deterioration of pavement. Six of the sands tested by P214 were evaluated using the Canadian Prism Test. None were identified as being reactive by the Canadian Prism Test.
Resumo:
The result and experience of field implementation of the maturity method on 14 portland cement concrete (PCC) paving and patching projects during 1995 are summarized in this report. The procedure for developing reference PCC maturity-strength curve of concrete is discussed. Temperature measurement as well as effects of datum temperature, entrained air content and type of aggregate on maturity-strength relationship are examined. Some limitations of the maturity method are discussed. The available field experience and results indicate that the maturity method provides a simple approach to determine strength of concrete, and can be easily implemented in field paving and patching projects. The use of the maturity method may result in reduced project construction time.
Resumo:
Skid resistance is a major concern of the safety engineer since wet pavement conditions are present for approximately 18% of the total accidents in Iowa according to studies by the Traffic and Safety Department. Many of these accidents may be influenced by the low skid resistant quality of the pavement. The size, shape, type, and arrangement of the concrete's particles interrelate with each other in a complex manner to give us frictional resistance. The purpose of this investigation was to determine which method of texturing provides the best skid resistance properties on portland cement concrete pavement.
Resumo:
The concept of cracking and seating a portland cement concrete (pcc) pavement prior to laying an asphalt cement concrete (acc) surface in order to reduce reflection cracking has been around since the 1950s. With the advent of improved cracking equipment, this method gained renewed interest in the 1970s and 1980s. This project incorporated six test sections of which four were cracked and seated prior to being overlaid. Fremont County decided to utilize only a 0.9 m (3 ft) cracking pattern based on a 30 m (100 ft) trial test section. Pavement cracking appeared to be effective in reducing primarily longitudinal reflectance cracking, but only marginally successful in the reduction of transverse reflective cracking.
Resumo:
Experience has shown that milling machines with carbide tipped teeth have the capability of profiling most asphalt concrete (ac) and portland cement concrete (pcc) pavements. Most standard milling operations today leave a very coarse, generally objectionable surface texture. This research utilized a Cedarapids Wirtgen 1900C mill modified by adding additional teeth. There were 411 teeth at a 5 millimeter transverse spacing (standard spacing is 15 mm) on a 6 ft. 4 in. long drum. The mill was used to profile and texture the surface of one ac and two pcc pavements. One year after the milling operation there is still some noticeable change in tire noise but the general appearance is good. The milling operation with the additional teeth provides an acceptable surface texture with improved Friction Numbers when compared to a nonmilled surface.