946 resultados para Plants, Cultivated.
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (33)
- Archive of European Integration (7)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (22)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- Biodiversity Heritage Library, United States (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (3)
- Brock University, Canada (10)
- Cambridge University Engineering Department Publications Database (22)
- CentAUR: Central Archive University of Reading - UK (123)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (155)
- Cochin University of Science & Technology (CUSAT), India (10)
- Dalarna University College Electronic Archive (3)
- Digital Commons at Florida International University (3)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (45)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (2)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (32)
- Indian Institute of Science - Bangalore - Índia (54)
- Infoteca EMBRAPA (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (5)
- Ministerio de Cultura, Spain (9)
- National Center for Biotechnology Information - NCBI (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (82)
- Queensland University of Technology - ePrints Archive (78)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (5)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositorio Institucional da UFLA (RIUFLA) (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (77)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (7)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (10)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (11)
- Université de Lausanne, Switzerland (8)
- Université de Montréal, Canada (6)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (55)
- University of Queensland eSpace - Australia (1)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
This paper investigates problems concerning vegetation along railways and proposes automatic means of detecting ground vegetation. Digital images of railway embankments have been acquired and used for the purpose. The current work mainly proposes two algorithms to be able to achieve automation. Initially a vegetation detection algorithm has been investigated for the purpose of detecting vegetation. Further a rail detection algorithm that is capable of identifying the rails and eventually the valid sampling area has been investigated. Results achieved in the current work report satisfactory (qualitative) detection rates.