1000 resultados para Plant shutdowns


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The spatial and temporal abundance of the aphid Euceraphis betulae was investigated in relation to heterogeneity in host plant ( Betula pendula) vigour and pathogenic stress. The performance of aphids feeding on vigorous and stressed foliage was also examined. 2. The plant stress and plant vigour hypotheses have been suggested as opposing ways in which foliage quality influences herbivore abundance. In many plants, however, vigorous growing foliage co-exists with stressed or damaged foliage. 3. There was a negative correlation between branch growth ( vigour) and branch stress ( leaf chlorosis), with the most vigorous branches displaying little or no stress, and the most stressed branches achieving poor growth. There was a similar negative correlation between vigour and stress at the level of individual trees, which themselves represented a continuum in quality. 4. At the beginning of the season, E. betulae were intermittently more abundant on vigorous branches than on branches destined to become stressed, but aphids became significantly more abundant on stressed branches later in the season, when symptoms of stress became apparent. Similar patterns of aphid abundance were seen on vigorous and stressed trees in the following year. 5. Euceraphis betulae performance was generally enhanced when feeding on naturally stressed B. pendula leaves, but there was some evidence for elevated potential reproduction when feeding on vigorous leaves too. 6. Overall, plant stress probably influences E. betulae distribution more than plant vigour, but the temporal and spatial variability in plant quality suggests that plant vigour could play a role in aphid distribution early in the season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the ability of neonatal larvae of the root-feeding weevil, Sitona lepidus Gyllenhal, to locate white clover Trifolium repens L. (Fabaceae) roots growing in soil and to distinguish them from the roots of other species of clover and a co-occurring grass species. Choice experiments used a combination of invasive techniques and the novel technique of high resolution X-ray microtomography to non-invasively track larval movement in the soil towards plant roots. Burrowing distances towards roots of different plant species were also examined. Newly hatched S. lepidus recognized T. repens roots and moved preferentially towards them when given a choice of roots of subterranean clover, Trifolium subterraneum L. (Fabaceae), strawberry clover Trifolium fragiferum L. (Fabaceae), or perennial ryegrass Lolium perenne L. (Poaceae). Larvae recognized T. repens roots, whether released in groups of five or singly, when released 25 mm (meso-scale recognition) or 60 mm (macro-scale recognition) away from plant roots. There was no statistically significant difference in movement rates of larvae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption of arsenic onto soil was investigated as a means of understanding arsenic-induced release of phosphate. In batch adsorption experiments As adsorption was accompanied by P desorption. At low As additions, the ratio As adsorbed: P desorbed remained constant. At higher As additions, P desorption reached a maximum while As adsorption continued to increase. The P desorption maximum coincided with an increase in pH. Barley plants were grown on soils spiked with arsenate (0-360 mg As kg(-1)) to investigate the effect on plant growth and P uptake. As arsenic concentration increased, above ground plant yield decreased and the plants showed symptoms typical of As toxicity and P deficiency. At low As additions to the soil, uptake of As and P by barley increased. At higher As additions P uptake decreased. It is argued that this was due to the change in As:P ratio in the soil solution. It is concluded that input of arsenic to the soil could mobilise phosphate. Crop yield is likely to be affected, either due to reduced phosphate availability at low arsenic additions or arsenic toxicity at higher additions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant root mucilages contain powerful surfactants that will alter the interaction of soil solids with water and ions, and the rates of microbial processes. The lipid composition of maize, lupin and wheat root mucilages was analysed by thin layer chromatography and gas chromatography-mass spectrometry. A commercially available phosphatidylcholine (lecithin), chemically similar to the phospholipid surfactants identified in the mucilages, was then used to evaluate its effects on selected soil properties. The lipids found in the mucilages were principally phosphatidylcholines, composed mainly of saturated fatty acids, in contrast to the lipids extracted from root tissues. In soil at low tension, lecithin reduced the water content at any particular tension by as much as 10 and 50% in soil and acid-washed sand, respectively. Lecithin decreased the amount of phosphate adsorption in soil and increased the phosphate concentration in solution by 10%. The surfactant also reduced net rates of ammonium consumption and nitrate production in soil. These experiments provide the first evidence we are aware of that plant-released surfactants will significantly modify the biophysical environment of the rhizosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elemental composition of residues of maize (Zea mays), sorghum (S. bicolor), groundnuts (Arachis hypogea), soya beans (Glycine max), leucaena (L. leucocephala), gliricidia (G. sepium), and sesbania (S. sesban) was determined as a basis for examining their alkalinity when incorporated into an acidic Zambian Ferralsol. Potential (ash) alkalinity, available alkalinity by titration to pH 4 and soluble alkalinity (16 It water extract titrated to pH 4) were measured. Potential alkalinity ranged from 3 73 (maize) to 1336 (groundnuts) mmol kg(-1) and was equivalent to the excess of their cation charge over inorganic anion charge. Available alkalinity was about half the potential alkalinity. Cations associated with organic anions are the source of alkalinity. About two thirds of the available alkalinity is soluble. Residue buffer curves were determined by titration with H2SO4 to pH 4. Soil buffer capacity measured by addition of NaOH was 12.9 mmol kg(-1) pH(-1). Soil and residue (10 g:0.25 g) were shaken in solution for 24 h and suspension pH values measured. Soil pH increased from 4.3 to between 4.6 (maize) and 5.2 (soyabean) and the amounts of acidity neutralized (calculated from the rise in pH and the soil buffer capacity) were between 3.9 and 11.5 mmol kg(-1), respectively. The apparent base contributions by the residues (calculated from the buffer curves and the fall in pH) ranged between 105 and 350 mmol kg(-1) of residue, equivalent to 2.6 and 8.8 mmol kg(-1) of soil, respectively. Therefore, in contact with soil acidity, more alkalinity becomes available than when in contact with H2SO4 solution. Available alkalinity (to pH 4) would be more than adequate to supply that which reacts with soil but soluble alkalinity would not. It was concluded that soil Al is able to displace cations associated with organic anions in the residues which are not displaced by H+, or that residue decomposition may have begun in the soil suspension releasing some of the non-available alkalinity. Soil and four of the residues were incubated for 100 days and changes in pH, NH4+ and NO3- concentrations measured. An acidity budget equated neutralized soil acidity with residue alkalinity and base or acid produced by N transformations. Most of the potential alkalinity of soyabean and leucaena had reacted after 14 days, but this only occurred after 100 days for gliricidia, and for maize only the available alkalinity reacted. For gliricidia and leucaena, residue alkalinity was primarily used to react with acidity produced by nitrification. Thus, the ability of residues to ameliorate acidity depends not only on their available and potential alkalinity but also on their potential to release mineral N. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flavonoids are a diverse class of polyphenolic compounds that are produced as a result of plant secondary metabolism. They are known to play a multifunctional role in rhizospheric plant-microbe and plant-plant communication. Most familiar is their function as a signal in initiation of the legume-rhizobia symbiosis, but, flavonoids may also be signals in the establishment of arbuscular mycorrhizal symbiosis and are known agents in plant defence and in allelopathic interactions. Flavonoid perception by, and impact on, their microbial targets (e.g. rhizobia, plant pathogens) is relatively well characterized. However, potential impacts on 'non-target' rhizosphere inhabitants ('non-target' is used to distinguish those microorganisms not conventionally known as targets) have not been thoroughly investigated. Thus, this review first summarizes the conventional roles of flavonoids as nod gene inducers, phytoalexins and allelochemicals before exploring questions concerning 'non-target' impacts. We hypothesize that flavonoids act to shape rhizosphere microbial community structure because they represent a potential source of carbon and toxicity and that they impact on rhizosphere function, for example, by accelerating the biodegradation of xenobiotics. We also examine the reverse question, 'how do rhizosphere microbial communities impact on flavonoid signals?' The presence of microorganisms undoubtedly influences the quality and quantity of flavonoids present in the rhizosphere, both through modification of root exudation patterns and microbial catabolism of exudates. Microbial alteration and attenuation of flavonoid signals may have ecological consequences for below-ground plant-microbe and plant-plant interaction. We have a lack of knowledge concerning the composition, concentration and bioavailability of flavonoids actually experienced by microbes in an intact rhizosphere, but this may be addressed through advances in microspectroscopic and biosensor techniques. Through the use of plant mutants defective in flavonoid biosynthesis, we may also start to address the question of the significance of flavonoids in shaping rhizosphere community structure and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonylphenol polyethoxylates (NPEOs) are surfactants found ubiquitously in the environment due to widespread industrial and domestic use. Biodegradation of NPEOs produces nonylphenol (NP), an endocrine disruptor. Sewage sludge application introduces NPEOs and NP into soils, potentially leading to accumulation in soils and crops. We examined degradation of NP and nonyl phenol-12-ethoxylate (NP12EO) in four soils. NP12EO degraded rapidly (initial half time 0.3-5 days). Concentrations became undetectable within 70-90 days, with a small increase in NP concentrations after 30 days. NP initially degraded quickly (mean half time 11.5 days), but in three soils a recalcitrant fraction of 26-35% remained: the non-degrading fraction may consist of branched isomers, resistant to biodegradation. Uptake of NP by bean plants was also examined. Mean bioconcentration factors for shoots and seeds were 0.71 and 0.58, respectively. Removal of NP from the soil by plant uptake was negligible (0.01-0.02% of initial NP). Root concentrations were substantially higher than shoot and seed concentrations. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have compared properties of roots from different lines (genotypes) of tobacco raised either in tissue culture or grown from seed. The different lines included unmodified plants and plants modified to express reduced activity of the enzyme cinnamoyl-CoA reductase, which has a pivotal role in lignin biosynthesis. The size and structure of the rhizosphere microbial community, characterized by adenosine triphosphate and phospholipid fatty acid analyses, were related to root chemistry (specifically the soluble carbohydrate concentration) and decomposition rate of the roots. The root material from unmodified plants decomposed faster following tissue culture compared with seed culture, and the faster decomposing material had significantly higher soluble carbohydrate concentrations. These observations are linked to the larger microbial biomass and greater diversity of the rhizosphere communities of tissue culture propagated plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms of long-term adaptation to low oxygen environment are quite well studied, but little is known about the sensing of oxygen shortage, the signal transduction and the short-term effects of hypoxia in plant cells. We have found that an RNA helicase eIF4A-III, a putative component of the Exon Junction Complex, rapidly changes its pattern of localisation in the plant nucleus under hypoxic conditions. In normal cell growth conditions GFP- eIF4A-III was mainly nucleoplasmic, but in hypoxia stress conditions it moved to the nucleolus and splicing speckles. This transition occurred within 15-20 min in Arabidopsis culture cells and seedling root cells, but took more than 2 h in tobacco BY-2 culture cells. Inhibition of respiration, transcription or phosphorylation in cells and ethanol treatment had similar effects to hypoxia. The most likely consequence is that a certain mRNA population will remain bound to the eIF4A-III and other mRNA processing proteins, rather than being transported from the nucleus to the cytoplasm, and thus its translation will be suspended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs whose main function in eukaryotes is to guide the modification of nucleotides in ribosomal and spliceosomal small nuclear RNAs, respectively. Full-length sequences of Arabidopsis snoRNAs and scaRNAs have been obtained from cDNA libraries of capped and uncapped small RNAs using RNA from isolated nucleoli from Arabidopsis cell cultures. We have identified 31 novel snoRNA genes (9 box C/D and 22 box H/ACA) and 15 new variants of previously described snoRNAs. Three related capped snoRNAs with a distinct gene organization and structure were identified as orthologues of animal U13snoRNAs. In addition, eight of the novel genes had no complementarity to rRNAs or snRNAs and are therefore putative orphan snoRNAs potentially reflecting wider functions for these RNAs. The nucleolar localization of a number of the snoRNAs and the localization to nuclear bodies of two putative scaRNAs was confirmed by in situ hybridization. The majority of the novel snoRNA genes were found in new gene clusters or as part of previously described clusters. These results expand the repertoire of Arabidopsis snoRNAs to 188 snoRNA genes with 294 gene variants.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing recognition of the importance of the long-chain n-3 PUFA, EPA and DHA, to cardiovascular health, and in the case of DHA to normal neurological development in the fetus and the newborn, has focused greater attention on the dietary supply of these fatty acids. The reason for low intakes of EPA and DHA in most developed countries (0 center dot 1-0 center dot 5hairspg/d) is the low consumption of oily fish, the richest dietary source of these fatty acids. An important question is whether dietary intake of the precursor n-3 fatty acid, alpha-linolenic acid (alpha LNA), can provide sufficient amounts of tissue EPA and DHA by conversion through the n-3 PUFA elongation-desaturation pathway. alpha LNA is present in marked amounts in plant sources, including green leafy vegetables and commonly-consumed oils such as rape-seed and soyabean oils, so that increased intake of this fatty acid would be easier to achieve than via increased fish consumption. However, alpha LNA-feeding studies and stable-isotope studies using alpha LNA, which have addressed the question of bioconversion of alpha LNA to EPA and DHA, have concluded that in adult men conversion to EPA is limited (approximately 8%) and conversion to DHA is extremely low (< 0 center dot 1%). In women fractional conversion to DHA appears to be greater (9%), which may partly be a result of a lower rate of utilisation of alpha LNA for beta-oxidation in women. However, up-regulation of the conversion of EPA to DHA has also been suggested, as a result of the actions of oestrogen on Delta 6-desaturase, and may be of particular importance in maintaining adequate provision of DHA in pregnancy. The effect of oestrogen on DHA concentration in pregnant and lactating women awaits confirmation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Germin is a homopentameric glycoprotein, the synthesis of which coincides with the onset of growth in germinating wheat embryos. There have been detailed studies of germin structure, biosynthesis, homology with other proteins, and of its value as a marker of wheat development. Germin isoforms associated with the apoplast have been speculated to have a role in embryo hydration during maturation and germination. Antigenically related isoforms of germin are present during germination in all of the economically important cereals studied, and the amounts of germin-like proteins and coding elements have been found to undergo conspicuous change when salt-tolerant higher plants are subjected to salt stress. In this report, we describe how circumstantial evidence arising from unrelated studies of barley oxalate oxidase and its coding elements have led to definitive evidence that the germin isoform made during wheat germination is an oxalate oxidase. Establishment of links between oxalate degradation, cereal germination, and salt tolerance has significant implications for a broad range of studies related to development and adaptation in higher plants. Roles for germin in cell wall biochemistry and tissue remodeling are discussed, with special emphasis on the generation of hydrogen peroxide during germin-induced oxidation of oxalate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Organisation for Economic Co-operation and Development (OECD) Terrestrial plant test is often used for the ecological risk assessment of contaminated land. However, its origins in plant protection product testing mean that the species recommended in the OECD guidelines are unlikely to occur on contaminated land. Six alternative species were tested on contaminated soils from a former Zn smelter and a metal fragmentizer with elevated concentrations of Cd, Cu, Pb, and Zn. The response of the alternative species was compared to two species recommended by the OECD; Lolium perenne (perennial ryegrass) and Trifolium pratense (red clover). Urtica dioica (stinging nettle) and Poa annua (annual meadow-grass) had low emergence rates in the control soil so may be considered unsuitable. Festuca rubra (chewings fescue), Holcus lanatus (Yorkshire fog), Senecio vulgaris (common groundsel), and Verbascum thapsus (great mullein) offer good alternatives to the OECD species. In particular, H. lanatus and S. vulgaris were more sensitive to the soils with moderate concentrations of Cd, Cu, Pb, and Zn than the OECD species.