968 resultados para Plant pathogen defense
Resumo:
Natural rubber, obtained almost exclusively from the Para rubber tree (Hevea brasiliensis), is a unique biopolymer of strategic importance that, in many of its most significant applications, cannot be replaced by synthetic rubber alternatives. Several pressing motives lead to the search for alternative sources of natural rubber. These include increased evidence of allergenic reactions to Hevea rubber, the danger that the fungal pathogen Microcyclus ulei, causative agent of South American Leaf Blight (SALB), might spread to Southeast Asia, which would severely disrupt rubber production, potential shortages of supply due to increasing demand and changes in land use, and a general trend towards the replacement of petroleum-derived chemicals with renewables. Two plant species have received considerable attention as potential alternative sources of natural rubber: the Mexican shrub Guayule (Parthenium argentatum Gray) and the Russian dandelion (Taraxacum koksaghyz). This review will summarize the current production methods and applications of natural rubber (dry rubber and latex), the threats to the production of natural rubber from the rubber tree, and describe the current knowledge of the production of natural rubber from guayule and Russian dandelion.
Resumo:
Audit report on the Iowa Department of Public Defense for the year ended June 30, 2006
Resumo:
Pollination syndromes involve convergent evolution towards phenotypes composed of specific scents, colours or floral morphologies that attract or restrict pollinator access to reward. How these traits might influence the distributions of plant species in interaction with pollinators has rarely been investigated. We sampled 870 vegetation plots in the western Swiss Alps and classified the plant species into seven blossom types according to their floral morphology (wind, disk, funnel, tube, bilabiate, head or brush). We investigated the environmental features of plots with functional diversity (FD) lower than expected by chance alone to detect potential pollination filtering and related the proportions of the seven blossom types to a combination of environmental descriptors. From these results, we inferred the potential effect of the pollinator on the spatial distribution of plant species. The vegetation plots with significantly lower FD of blossom types than expected by chance were found at higher altitudes, and the proportions of blossom types were strongly patterned along the same gradient. These results support a biotic filtering effect on plant species assemblages through pollination: disk blossoms became dominant at higher altitudes, resulting in a lower FD. In harsh conditions at high altitudes, pollinators usually decrease in activity, and the openness of the disk blossom grants access to any available pollinator. Inversely, bilabiate blossoms, which are mostly pollinated by bees, were more abundant at lower elevations, which are characterised by greater abundance and diversity of bees. Generalisation through openness of the blossom could be advantageous at high elevations, while specialisation could be a successful alternative strategy at lower elevations. The approach used in this study is purely correlative, and further investigations should be conducted to infer the nature of the causal relationship between plant and pollinator distributions.
Resumo:
Audit report on the Wireless E911 Emergency Communication Fund of the Iowa Homeland Security and Emergency Management Division of the Iowa Department of Public Defense for the year ended June 30, 2006
Resumo:
Résumé II y a cinq ans, la découverte d'un nouveau domaine, le PYD domaine, lié aux domaines de la mort, a permis la description de la nouvelle famille des NALP protéines. L'analyse structurelle de cette famille de protéines révéla la présence de deux autres domaines, impliqués dans l'oligomerisation, NACHT, et la détection des ligands, Leucine rich repeats ou LRR. Cette architecture protéique est homologue à celle qui est décrite pour les NODs, les Tol1 récepteurs et tes protéines de résistance chez les plantes. Cette homologie suggère une possible implication des NALPs dans la régulation de l'immunité innée. Premièrement, nous avons décrit les composants minimaux qui permettent à l'inflammasomeNALP3 d'activer la caspase pro-inflammatoire, caspase-1. En comparaison à NALP1, NALP3 ne contient pas de FIIND domaine, ni de CARD domaine en C-terminus et n'interagit pas avec caspase-5. Nous avons découvert une protéine très homologue au C-terminus de NALP1, Cardinal, qui se lie au NACHT domaine de NALP2 et NALP3 par l'intermédiaire de son FIIND domaine. Cardinal possède la capacité d'interagir avec caspase-l, mais seul ASC semble être nécessaire à la maturation de la prointerleukine-1β suite à la stimulation de NALP3. Deuxièmement, notre étude s'est concentrée sur la nature du stimulus capable d'induire la formation et l'activation de l'inflammasome-NALP3. Nous avons démontré que l'ajout de muramyl dipeptide (MDP), produit à partir de la digestion enzymatique de peptidoglycaris bactériens, induit à la fois l'expression de la proIL-1β par la voie NOD2 et sa maturation en IL-1β active par la voie NALP3. Bien que le MDP active l'inflammasome-NALP3, il est incapable d'induire la sécrétion de l'IL-1β mature dans la lignée cellulaire THP1, comparé aux monocytes primaires humains. Cette différence pourrait être liée à l'absence, dans les THP1, de la protéine Filamin, qui est proposée d'interagir avec Cardinal. L'implication de NALP3 dans la maturation de l'IL-lb est confirmée suite à la découverte de mutations sur le gène CIAS1/NALP3/cryopyrin associées à trois maladies auto-inflammatoires : le syndrome de Muckle-Wells (MWS), l'urticaire familial au froid (FCU) et le syndrome CINCA/NOMID. Une élévation constitutive de la maturation et de la sécrétion de la proIL-1β en absence de stimulation MDP est détectée dans les macrophages des patients Muckle-Wells. En conclusion, nos études ont démontré que l'inflammasome-NALP3 doit être finement régulé pour éviter une activité incontrôlée qui représente la base moléculaire des symptômes associés aux syndromes auto-inflammatoires liés à NALP3. Summary Five years ago, the description of the NALP family originated from the discovery of a new death-domain fold family, the PYD domain. NALP contains aprotein-protein interaction domain (PYD), an oligomerization domain (NACHT) and a ligand-sensing domain, leucine rich repeats or LRR. This protein architecture shares similarity with receptors involved in immunity, such as NODS, Toll receptors (TLRs) and related plant resistance proteins, and points to an important role of NALPs in defense mechanisms. We first described the minimal complex involved in the pro-inflammatory Interleukin-1beta (IL-1β) cytokine maturation, called the inflammasome, which contains NALP3. In contrast to NALP1, NALP3, like other members of the NALP family, is devoid of C-terminal FIIND and CARD domains and does not interact with the pro-inflammatory caspase-5. Interestingly, a homolog of the C-terminal portion of NALP1 was found in the human genome and was named Cardinal. We found that NALP2 and NALP3 interact with the CARD-containing proteins Cardinal. Cardinal is able to bind to caspase-1 but is not required for IL-1β maturation through NALP3 activation, as demonstrated for the adaptor ASC. Secondly, our study focused on the stimuli involved in the activation of the NALP3 inflammasome. MDP was shown to induce the expression of proIL1β through NOD2 and then the maturation into active IL-1β by activation of the NALP3 inflammasome. However, in the monocytic THP1 cell line, secretion of IL-1β upon MDP stimulation seems to be independent of the inflammasome activation compared to human primary monocytes. This difference might be linked to a Cardinal-interacting protein, filamin. Until now, the role of Cardinal and filamin is still unknown and remains to be elucidated. Finally, mutations in the NALP3/cryopyrin/CIAS1 gene are associated with three autoinflammatory diseases: Muckle-Wells syndrome, familial cold autoinflammatory syndrome, and CINCA. Constitutive, elevated IL-1β maturation and secretion, even in the absence of MDP stimulation, was observed in macrophages from Muckle-Wells patients and confirmed a key role for the NALP3 inflammasome in innate immunity In conclusion, our studies describes the formation of the NALP3 inflammasome and suggests that this complex has to be tightly regulated to avoid an increased deregulated inflammasome activity that is the molecular basis for the symptoms associated with NALP3-dependent autoinflammatory disorders.
Resumo:
Arthrobacter chlorophenolicus A6 is a Gram-positive, 4-chlorophenol-degrading soil bacterium that was recently shown to be an effective colonizer of plant leaf surfaces. The genetic basis for this phyllosphere competency is unknown. In this paper, we describe the genome-wide expression profile of A.chlorophenolicus on leaves of common bean (Phaseolus vulgaris) compared with growth on agar surfaces. In phyllosphere-grown cells, we found elevated expression of several genes known to contribute to epiphytic fitness, for example those involved in nutrient acquisition, attachment, stress response and horizontal gene transfer. A surprising result was the leaf-induced expression of a subset of the so-called cph genes for the degradation of 4-chlorophenol. This subset encodes the conversion of the phenolic compound hydroquinone to 3-oxoadipate, and was shown to be induced not only by 4-chlorophenol but also hydroquinone, its glycosylated derivative arbutin, and phenol. Small amounts of hydroquinone, but not arbutin or phenol, were detected in leaf surface washes of P.vulgaris by gas chromatography-mass spectrometry. Our findings illustrate the utility of genomics approaches for exploration and improved understanding of a microbial habitat. Also, they highlight the potential for phyllosphere-based priming of bacteria to stimulate pollutant degradation, which holds promise for the application of phylloremediation.
Resumo:
The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.
Resumo:
Epidemiological studies in urban areas have linked increasing respiratory and cardiovascular pathologies with atmospheric particulate matter (PM) from anthropic activities. However, the biological fate of metal-rich PM industrial emissions in urban areas of developed countries remains understudied. Lead toxicity and bioaccessibility assessments were therefore performed on emissions from a lead recycling plant, using complementary chemical acellular tests and toxicological assays, as a function of PM size (PM(10-2.5), PM(2.5-1) and PM(1)) and origin (furnace, refining and channeled emissions). Process PM displayed differences in metal content, granulometry, and percentage of inhalable fraction as a function of their origin. Lead gastric bioaccessibility was relatively low (maximum 25%) versus previous studies; although, because of high total lead concentrations, significant metal quantities were solubilized in simulated gastrointestinal fluids. Regardless of origin, the finest PM(1) particles induced the most significant pro-inflammatory response in human bronchial epithelial cells. Moreover, this biological response correlated with pro-oxidant potential assay results, suggesting some biological predictive value for acellular tests. Pulmonary effects from lead-rich PM could be driven by thiol complexation with either lead ions or directly on the particulate surface. Finally, health concern of PM was discussed on the basis of pro-inflammatory effects, accellular test results, and PM size distribution.
Resumo:
Work on the interaction of aerial plant parts with pathogens has identified the signaling molecules jasmonic acid (JA) and salicylic acid (SA) as important players in induced defense of the plant against invading organisms. Much less is known about the role of JA and SA signaling in root infection. Recent progress has been made in research on plant interactions with biotrophic mutualists and parasites that exclusively associate with roots, namely arbuscular mycorrhizal and rhizobial symbioses on one hand and nematode and parasitic plant interactions on the other hand. Here, we review these recent advances relating JA and SA signaling to specific stages of root colonization and discuss how both signaling molecules contribute to a balance between compatibility and defense in mutualistic as well as parasitic biotroph-root interactions.
Resumo:
We observed the occurrence of large numbers of galls induced by Parkiamyia paraensis (Diptera, Cecidomyiidae) on the leaflets of Parkia pendula (Fabaceae) in northern Para, Brazil. We addressed two questions in this study: i) what is the proportion of attacked plants in the field, and nursery conditions?; and ii) what is the impact of galls on the host plant? An average of 86% of the plants were galled in the field. Galled P. pendula were distinct from healthy individuals due to their prostrated architecture and death of terminal shoots. Approximately 50% of the total available leaves and 35% leaflets were attacked by P. paraensis on saplings under nursery conditions. Each one-year old plant supported an average of 1,300 galls, and an average of 60g allocated to galled tissue. Otherwise, attacked individuals were taller and heavier than healthy plants. Attacked plants weighed five times more than healthy plants. When the weight of the galls was removed, the total weight (aerial part without galls) of attacked plants was drastically reduced, indicating that most of the biomass of attacked plants was due to the attack by P. paraensis galls. Although the data indicate a paradox, as young plants attacked by the galling herbivore appear to develop more vigorously than unattacked plants, we suggest that P. paraensis negatively affect P. pendula development.
Resumo:
SUMMARY: Research into the evolution of subdivided plant populations has long involved the study of phenotypic variation across plant geographic ranges and the genetic details underlying that variation. Genetic polymorphism at different marker loci has also allowed us to infer the long- and short-term histories of gene flow within and among populations, including range expansions and colonization-extinction dynamics. However, the advent of affordable genome-wide sequences for large numbers of individuals is opening up new possibilities for the study of subdivided populations. In this review, we consider what the new tools and technologies may allow us to do. In particular, we encourage researchers to look beyond the description of variation and to use genomic tools to address new hypotheses, or old ones afresh. Because subdivided plant populations are complex structures, we caution researchers away from adopting simplistic interpretations of their data, and to consider the patterns they observe in terms of the population genetic processes that have given rise to them; here, the genealogical framework of the coalescent will continue to be conceptually and analytically useful.
Resumo:
The seasonal characteristics of the Cerrado region strongly influence food resource predictability and vegetal tissue nutritional content. The aims of this work were to record the abundance and temporal distribution of Gonioterma exquisita Duckworth, 1964 (Lepidoptera, Elachistidae) and its relation with phenological, physical, and chemical traits of the host plant Byrsonima pachyphylla Griseb. (Malpighiaceae). Four nutritional quality parameters were determined for new and mature leaves: gross protein and nitrogen content, dry matter, and in vitro digestibility. We inspected 200 plants per month, searching for G. exquisita caterpillars. About 35.8% of the 2,400 plants inspected presented caterpillars, with an abundance peak in the wet season. Caterpillar abundance was positively correlated with mature leaf availability, their food resource. Although mature leaves presented lower gross protein and nitrogen contents than new leaves, this difference was small during the abundance peak of G. exquisita.
Resumo:
The plant architecture hypothesis predicts that variation in host plant architecture influences insect herbivore community structure, dynamics and performance. In this study we evaluated the effects of Macairea radula (Melastomataceae) architecture on the abundance of galls induced by a moth (Lepidoptera: Gelechiidae). Plant architecture and gall abundance were directly recorded on 58 arbitrarily chosen M. radula host plants in the rainy season of 2006 in an area of Cerrado vegetation, southeastern Brazil. Plant height, dry biomass, number of branches, number of shoots and leaf abundance were used as predicting variables of gall abundance and larval survival. Gall abundance correlated positively with host plant biomass and branch number. Otherwise, no correlation (p > 0.05) was found between gall abundance with shoot number or with the number of leaves/plant. From a total of 124 galls analyzed, 67.7% survived, 14.5% were attacked by parasitoids, while 17.7% died due to unknown causes. Larvae that survived or were parasitized were not influenced by architectural complexity of the host plant. Our results partially corroborate the plant architecture hypothesis, but since parasitism was not related to plant architecture it is argued that bottom-up effects may be more important than top-down effects in controlling the population dynamics of the galling lepidopteran. Because galling insects often decrease plant fitness, the potential of galling insects in selecting for less architectural complex plants is discussed.
Resumo:
Audit report on the Wireless E911 Emergency Communication Fund of the Iowa Homeland Security and Emergency Management Division of the Iowa Department of Public Defense for the year ended June 30, 2007