956 resultados para Physics Applied
Resumo:
Tese de doutoramento em Ciências da Educação, área de Teoria Curricular e Ensino das Ciências
Resumo:
To show with the case of Applied Optics (AO), the adequacy of blended learning to the teaching/learning process in experimental Science and technology (S&T).
Resumo:
This work presents the results of the experimental study of proton induced nuclear reactions in lithium, namely the 7Li(p,α) 4He, 6Li(p,α) 3He and 7Li(p,p)7Li reactions. The amount of 7Li and 6Li identified as primordial and observed in very old stars of the Milky Way galactic halo strongly deviates from the predictions of primordial nucleosynthesis and stellar evolution models which depend, among other factors, on the cross sections of reactions like 7Li(p,α) 4He and 6Li(p,α) 3He. These discrepancies have triggered a large amount of research in the fields of stellar evolution, cosmology, pre-galactic evolution and low energy nuclear reactions. Focusing on nuclear reactions, this work has measured the 7Li(p,α) 4He and 6Li(p,α) 3He reactions cross sections (expressed in terms of the astrophysical S -factor) with higher accuracy, and the electron screening effects in these reactions for different environments (insulators and metallic targets). The 7Li(p,α) 4He angular distributions were also measured. These measurementstook place in two laboratory facilities, in the framework of the LUNA (Laboratory for Undergroud Nuclear Astrophysics) international collaboration, namely the Laboratorio ´ de Feixe de Ioes ˜ in ITN (Instituto Tecnologico ´ e Nuclear) Sacavem, ´ Portugal, and the Dynamitron-TandemLaboratorium in Ruhr-Universitat¨ Bochum, Germany. The ITN target chamber was modified to measure these nuclear reactions, with the design and construction of new components, the addition of one turbomolecular pump and a cold finger. The 7Li(p,α) 4He and 6Li(p,α) 3He reactions were measured concurrently with seven and four targets, respectively. These targets were produced in order to obtain adequate and stable lithium depth profiles. In metallic environments, the measured electron screening potential energies are much higher than the predictions of atomic-physics models. The Debye screening model applied to the metallic conduction electrons is able to explain these high values. It is a simple model, but also very robust. Concerning primordial nucleosynthesis and stellar evolution models, these results are very important as they show that laboratory measurements are well controlled, and the model inputs from these cross sections are therefore correct. In this work the 7Li(p,p)7Li differential cross section was also measured, which is useful to describe the 7Li(p,α) 4He entrance channel.
Resumo:
This paper focus on a demand response model analysis in a smart grid context considering a contingency scenario. A fuzzy clustering technique is applied on the developed demand response model and an analysis is performed for the contingency scenario. Model considerations and architecture are described. The demand response developed model aims to support consumers decisions regarding their consumption needs and possible economic benefits.
Resumo:
This article describes a finite element-based formulation for the statistical analysis of the response of stochastic structural composite systems whose material properties are described by random fields. A first-order technique is used to obtain the second-order statistics for the structural response considering means and variances of the displacement and stress fields of plate or shell composite structures. Propagation of uncertainties depends on sensitivities taken as measurement of variation effects. The adjoint variable method is used to obtain the sensitivity matrix. This method is appropriated for composite structures due to the large number of random input parameters. Dominant effects on the stochastic characteristics are studied analyzing the influence of different random parameters. In particular, a study of the anisotropy influence on uncertainties propagation of angle-ply composites is carried out based on the proposed approach.
Resumo:
Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its clean, low-cost, high efficiency, good durability, and easy fabrication. However, enhancing the efficiency of the DSSC still is an important issue. Here we devise a bifacial DSSC based on a transparent polyaniline (PANI) counter electrode (CE). Owing to the sunlight irradiation simultaneously from the front and the rear sides, more dye molecules are excited and more carriers are generated, which results in the enhancement of short-circuit current density and therefore overall conversion efficiency. The photoelectric properties of PANI can be improved by modifying with 4-aminothiophenol (4-ATP). The bifacial DSSC with 4-ATP/PANI CE achieves a light-to-electric energy conversion efficiency of 8.35%, which is increased by ,24.6% compared to the DSSC irradiated from the front only. This new concept along with promising results provides a new approach for enhancing the photovoltaic performances of solar cells.
Resumo:
In Nonlinear Optimization Penalty and Barrier Methods are normally used to solve Constrained Problems. There are several Penalty/Barrier Methods and they are used in several areas from Engineering to Economy, through Biology, Chemistry, Physics among others. In these areas it often appears Optimization Problems in which the involved functions (objective and constraints) are non-smooth and/or their derivatives are not know. In this work some Penalty/Barrier functions are tested and compared, using in the internal process, Derivative-free, namely Direct Search, methods. This work is a part of a bigger project involving the development of an Application Programming Interface, that implements several Optimization Methods, to be used in applications that need to solve constrained and/or unconstrained Nonlinear Optimization Problems. Besides the use of it in applied mathematics research it is also to be used in engineering software packages.
Resumo:
This paper focus on a demand response model analysis in a smart grid context considering a contingency scenario. A fuzzy clustering technique is applied on the developed demand response model and an analysis is performed for the contingency scenario. Model considerations and architecture are described. The demand response developed model aims to support consumers decisions regarding their consumption needs and possible economic benefits.
Resumo:
Selenium functions as a co-factor for the reduction of antioxidant enzymes and is an important component of antioxidant enzymes. Dietary selenium significantly inhibits the induction of skin, liver, colon, and mammary tumours in experimental animals by a number of different carcinogens, as well as the induction of mammary tumours by viruses. Selenium shows a “U” shaped curve for functionality, whereby too little is as damaging as too much. At optimal levels, selenium may protect against the formation of DNA adducts, DNA or chromosome breakage, chromosome gain or loss, mitochondrial DNA, and telomere length and function. Aim of study: Investigate the relation between selenium and genotoxic effects in a human biomonitoring study applied to occupational health.
Resumo:
A fuzzy linguistic controller has been developed and implemented with the aim to cope with interactions between control loops due to coupling effects. To access the performance of the proposed approach several experiments have also been conducted using the classical PID controllers in the control loops. A mixing process has been used as test bed of all controllers experimented and the corresponding dynamic model has been derived. The successful results achieved with the fuzzy linguistic controllers suggests that they can be an alternative to classical controllers when in the presence of process plants where automatic control as to cope with coupling effects between control loops. © 2014 IEEE.
Resumo:
The aim of the present work was to characterize the internal structure of nanogratings generated inside bulk fused silica by ultrafast laser processing and to study the influence of diluted hydrofluoric acid etching on their structure. The nanogratings were inscribed at a depth of 100 mu m within fused silica wafers by a direct writing method, using 1030 nm radiation wavelength and the following processing parameters: E = 5 mu J, tau = 560 fs, f = 10 kHz, and v = 100 mu m/s. The results achieved show that the laser-affected regions are elongated ellipsoids with a typical major diameter of about 30 mu m and a minor diameter of about 6 mu m. The nanogratings within these regions are composed of alternating nanoplanes of damaged and undamaged material, with an average periodicity of 351 +/- 21 nm. The damaged nanoplanes contain nanopores randomly dispersed in a material containing a large density of defects. These nanopores present a roughly bimodal size distribution with average dimensions for each class of pores 65 +/- 20 x 16 +/- 8 x 69 +/- 16 nm(3) and 367 +/- 239 x 16 +/- 8 x 360 +/- 194 nm(3), respectively. The number and size of the nanopores increases drastically when an hydrofluoric acid treatment is performed, leading to the coalescence of these voids into large planar discontinuities parallel to the nanoplanes. The preferential etching of the damaged material by the hydrofluoric acid solution, which is responsible for the pores growth and coalescence, confirms its high defect density. (C) 2014 AIP Publishing LLC.